TES/TL – Exercices – Loi binomiale

Loi binomiale

probabilités conditionnelles, lois de probabilité

 

Exercice 1     d’après Liban mai 2018 

$80$ personnes s’apprêtent à passer le portique de sécurité. On suppose que pour chaque personne la probabilité que le portique sonne est égale à $0,021~92$.
Soit $X$ la variable aléatoire donnant le nombre de personnes faisant sonner le portique, parmi les $80$ personnes de ce groupe.

  1. Justifier que $X$ suit une loi binomiale dont on précisera les paramètres.
    $\quad$
  2. Calculer l’espérance de $X$ et interpréter le résultat.
    $\quad$
  3. Sans le justifier, donner la valeur arrondie à $10^{-3}$ de:
    $\bullet$ la probabilité qu’au moins une personne du groupe fasse sonner le portique;
    $\quad$
    $\bullet$ la probabilité qu’au maximum 5 personnes fassent sonner le portique.
    $\quad$
  4. Sans le justifier, donner la valeur du plus petit entier $n$ tel que $P(X \pp n) \pg 0,9$.
    $\quad$
Correction Exercice 1

  1.  On répète $80$ fois la même expérience aléatoire. Toutes les “tirages” sont identiques, indépendants. Chaque expérience possède exactement deux issues : $S$ et $\conj{S}$.
    De plus $P(S)=0,021~92$.
    $X$ suit donc la loi binomiale de paramètres $n=80$ et $p=0,021~92$.
    $\quad$
  2. $E(X)=np=1,753~6$.
    Un moyenne environ $1,7$ personnes feront sonner le portique.
    $\quad$
  3. La probabilité qu’au moins une personne du groupe fasse sonner le portique est :
    $P(X \pg 1)=1-P(X=0)=1-(1-0,021~92)^{80} \approx 0,830$
    $\quad$
    La probabilité qu’au maximum $5$ personnes fassent sonner le portique est :
    $P(X \pp 5) \approx 0,992$ d’après la calculatrice.
    $\quad$
  4. En utilisant le mode table de la calculatrice on obtient :
    $P(X \pp 2) \approx 0,744$ et $P(X \pp 3) \approx 0,901$
    Donc $3$ est le plus petit entier tel que $P(X \pp n) \pg 0,9$.
    $\quad$

[collapse]

$\quad$

Exercice 2     d’après Asie juin 2018

Pour la recherche d’un emploi, une personne envoie sa candidature à $25$ entreprises.
La probabilité qu’une entreprise lui réponde est de $0,2$ et on suppose que ces réponses sont indépendantes.
Quelle est la probabilité, arrondie au centième, que la personne reçoive au moins $5$ réponses ?

$\quad$

Correction Exercice 2

On effectue $25$ tirages aléatoires, identiques et indépendants.
À chaque tirage il n’y a que deux issues : l’événement $E$ “l’entreprise lui répond” et $\conj{E}$.
De plus $p(E)=0,2$.
La variable aléatoire $X$ comptant le nombre de réponse suit donc la loi binomiale de paramètres $n=25$ et $p=0,2$.
Ainsi $p(X\pg 5)=1-p(X \pp 4) \approx 0,58$.

[collapse]

$\quad$

Exercice 3     d’après Antilles Guyane juin 2018

Victor a téléchargé un jeu sur son téléphone. Le but de ce jeu est d’affronter des obstacles à l’aide de personnages qui peuvent être de trois types: “Terre”, “Air” ou “Feu”.
Au début de chaque partie, Victor obtient de façon aléatoire un personnage d’un des trois types et peut, en cours de partie, conserver ce personnage ou changer une seule fois de type de personnage.
On considère $10$ parties jouées par Victor, prises indépendamment les unes des autres.
La probabilité que Victor obtienne un personnage de type “Terre” est $0,3$.
$Y$ désigne la variable aléatoire qui compte le nombre de personnages de type “Terre” obtenus au début de ses $10$ parties.

  1. Justifier que cette situation peut être modélisée par une loi binomiale dont on précisera les paramètres.
    $\quad$
  2. Calculer la probabilité que Victor ait obtenu exactement 3 personnages de type “Terre” au début de ses $10$ parties.
    $\quad$
  3. Calculer la probabilité que Victor ait obtenu au moins une fois un personnage de type “Terre” au début de ses $10$ parties.
    $\quad$
Correction Exercice 3

  1. Il y a $10$ tirages indépendants, aléatoires, identiques.
    À chaque tirage, il n’y a que deux issues : $T$ et $\conj{T}$.
    De plus $p(T)=0,3$
    La variable aléatoire $Y$ suit donc la loi binomiale de paramètres $n=10$ et $p=0,3$.
    $\quad$
  2. $P(Y=3)=\ds \binom{10}{3}\times 0,3^3\times 0,7^{10-3}\approx 0,27$
    La probabilité que Victor ait obtenu exactement $3$ personnages de type « Terre » au début de ses $10$ parties est environ égale à $0,27$
    $\quad$
  3. $P(Y\pg 1)=1-P(Y=0)=1-0,7^{10}\approx 0,97$.
    La probabilité que Victor ait obtenu au moins une fois un personnage de type « Terre » au début de ses $10$ parties est environ égal à $0,97$.
    $\quad$

[collapse]

$\quad$

$\quad$

Exercice 4     d’après Antilles Guyane septembre 2018

Une compagnie aérienne a mis en place pour une de ses lignes un système de sur-réservation afin d’abaisser les coûts.
Les réservations ne peuvent se faire qu’auprès d’une agence ou sur le site Internet de la compagnie.
Sur cette ligne, la compagnie affrète un appareil de $200$ places et a vendu $202$ réservations.
On suppose que le nombre de clients se présentant à l’embarquement peut être modélisé par une variable aléatoire $X$ qui suit la loi binomiale de paramètres $n = 202$ et $p = 0,971$.

  1. Calculer la probabilité que tous les clients se présentent à l’embarquement.
    $\quad$
  2. Calculer la probabilité qu’un seul client parmi les $202$ qui ont réservé ne se présente pas à l’embarquement.
    $\quad$
  3. En déduire la probabilité que la compagnie se trouve en situation de sur-réservation (c’est-à-dire avec plus de clients qui se présentent à l’embarquement que de places).
    $\quad$
Correction Exercice 4

  1. On veut calculer $p(X=202)=\ds \binom{202}{202}\times 0,971^{202} \approx 0,003$
    La probabilité que tous les clients se présentent à l’embarquement est environ égale à $0,003$.
    $\quad$
  2. On veut calculer $p(X=201) = \ds \binom{202}{201} \times 0,971^{201}\times (1-0,971) \approx 0,016$.
    La probabilité qu’un seul client parmi les $202$ qui ont réservé ne se présente pas à l’embarquement est environ égale à $0,016$.
    $\quad$
  3. Ainsi $p(X>200)=p(X=201)+p(X=202) \approx 0,018$.
    La probabilité que la compagnie se trouve en situation de surréservation est environ égale à $0,019$.
    Remarque : Si on n’utilise pas les arrondis précédents mais la valeur donnée directement par la calculatrice quand on calcule $p(X>200)=1-p(X\pp 200)$ on obtient $p(X>200) \approx 0,018$.
    $\quad$

[collapse]

$\quad$

Exercice 5     Métropole juin 2017

L’angine chez l’être humain est provoquée soit par une bactérie (angine bactérienne), soit par un virus (angine virale).
On admet qu’un malade ne peut pas être à la fois porteur du virus et de la bactérie.
L’angine est bactérienne dans $20\%$ des cas.
Pour déterminer si une angine est bactérienne, on dispose d’un test. Le résultat du test peut être positif ou négatif. Le test est conçu pour être positif lorsque l’angine est bactérienne, mais il présente des risques d’erreur :

  • si l’angine est bactérienne, le test est négatif dans $30\%$ des cas ;
  • si l’angine est virale, le test est positif dans $10\%$ des cas.

On choisit au hasard un malade atteint d’angine. On note :

  • $B$ l’événement : “l’angine du malade est bactérienne” ;
  •  $T$ l’événement : “le test effectué sur le malade est positif” .

On rappelle que si $E$ et $F$ sont deux événements, $p(E)$ désigne la probabilité de $E$ et $p_{F}(E)$ désigne la probabilité de $E$ sachant que $F$ est réalisé. On note $\conj{E}$ l’événement contraire de $E$.

  1. Représenter la situation par un arbre de probabilité.
    $\quad$
  2. a. Quelle est la probabilité que l’angine du malade soit bactérienne et que le test soit positif ?
    $\quad$
    b. Montrer que la probabilité que le test soit positif est $0,22$.
    $\quad$
    c. Un malade est choisi au hasard parmi ceux dont le test est positif. Quelle est la probabilité pour que son angine soit bactérienne ?
    $\quad$
  3. On choisit au hasard cinq malades atteints d’une angine.
    On note $X$ la variable aléatoire qui donne, parmi les cinq malades choisis, le nombre de malades dont le test est positif.
    a. Quelle est la loi de probabilité suivie par $X$ ?
    $\quad$
    b. Calculer la probabilité qu’au moins l’un des cinq malades ait un test positif.
    $\quad$
    c. Calculer l’espérance mathématique de $X$.
    $\quad$
Correction Exercice 5

  1. On obtient l’arbre pondéré suivant :
  2. a. On veut déterminer $p(B\cap T)=0,2\times 0,7=0,14$
    $\quad$
    b. D’après la formule des probabilités totales on a :
    $\begin{align*} p(T)&=p(B\cap T)+p\left(\conj{B}\cap T\right) \\
    &=0,14+0,8\times 0,1 \\
    &=0,22
    \end{align*}$
    $\quad$
    c. On veut calculer :
    $\begin{align*} p_T(B)&=\dfrac{p(T\cap B)}{p(T)} \\
    &=\dfrac{0,14}{0,22} \\
    &=\dfrac{7}{11}
    \end{align*}$
    $\quad$
  3. a. On effectue $5$ tirages aléatoires, identiques et indépendants. À chaque tirage, il y a deux issues : $T$ et $\conj{T}$. De plus $p(T)=0,22$.
    La variable aléatoire $X$ suit donc la loi binomiale de paramètres $n=5$ et $p=0,22$.
    $\quad$
    b. $P(X\pg 1) = 1-p(X=0) =1-0,78^5\approx 0,711$
    $\quad$
    c. L’espérance est $E(X)=np=1,1$.
    $\quad$

[collapse]

$\quad$

Exercice 6     Nouvelle Calédonie novembre 2017

Dans cet exercice, les résultats seront arrondis au millième

Une agence de voyage propose des itinéraires touristiques pour lesquels chaque client effectue un aller et un retour en utilisant soit un bateau, soit un train touristique. Le choix du mode de transport peut changer entre l’aller et le retour. À l’aller, le bateau est choisi dans $65\%$ des cas.
Lorsque le bateau est choisi à l’aller, il l’est également pour le retour $9$ fois sur $10$.
Lorsque le train a été choisi à l’aller, le bateau est préféré pour le retour dans $70\%$ des cas.

On interroge au hasard un client. On considère les événements suivants :

  • $A$ : “le client choisit de faire l’aller en bateau” ;
  • $R$ : “le client choisit de faire le retour en bateau” .

On rappelle que si $E$ est un événement, $p(E)$ désigne la probabilité de l’événement $E$ et on note $\conj{E}$ l’événement contraire de $E$.

  1. Traduire cette situation par un arbre pondéré.
    $\quad$
  2. On choisit au hasard un client de l’agence.
    a. Calculer la probabilité que le client fasse l’aller-retour en bateau.
    $\quad$
    b. Montrer que la probabilité que le client utilise les deux moyens de transport est égale à $0,31$.
    $\quad$
  3. On choisit au hasard $20$ clients de cette agence.
    On note $X$ la variable aléatoire qui compte le nombre de clients qui utilisent les deux moyens de transport.
    On admet que le nombre de clients est assez grand pour que l’on puisse considérer que $X$ suit une loi binomiale.
    a. Préciser les paramètres de cette loi binomiale.
    $\quad$
    b. Déterminer la probabilité qu’exactement $12$ clients utilisent les deux moyens de transport différents.
    $\quad$
    c. Déterminer la probabilité qu’il y ait au moins $2$ clients qui utilisent les deux moyens de transport différents.
    $\quad$
  4. Le coût d’un trajet aller ou d’un trajet retour est de $1~560$ € en bateau ; il est de $1~200$ € en train.
    On note $Y$ la variable aléatoire qui associe, à un client pris au hasard, le coût en euro de son trajet aller-retour.
    a. Déterminer la loi de probabilité de $Y$.
    $\quad$
    b. Calculer l’espérance mathématique de $Y$. Interpréter le résultat.
    $\quad$
Correction Exercice 6

  1. $\quad$

    $\quad$
  2. a. On veut calculer $p(A\cap R)=0,65\times 0,9=0,585$
    $\quad$
    b. On veut calculer :
    $\begin{align*} p\left(\conj{A}\cap R\right)+p\left(A \cap\conj{R}\right)&=0,65\times 0,1+0,35\times 0,7 \\
    &=0,065+0,245\\
    &=0,31
    \end{align*}$
    $\quad$
  3. a. Les paramètres de loi binomiale suivie par la variable aléatoire $X$ sont $n=20$ et $p=0,31$.
    $\quad$
    b. On veut calculer :
    $p(X=12)=\displaystyle \binom{20}{12}\times 0,31^{12}\times 0,69^8\approx 0,005$ d’après la calculatrice.
    $\quad$
    c. On veut calculer :
    $p(X\pg 2)=1-P(X\pp 1)\approx 0,994$ d’après la calculatrice.
    $\quad$
  4. a. Le coût d’un aller-retour en bateau est de $3~120$€. La probabilité associée est $0,585$
    Le coût d’un voyage utilisant les deux moyens de transports est de $2~760$€. La probabilité associée est $0,31$.
    le coût d’un aller-retour en train est de $2~400$€. La probabilité associée est $1-0,585-0,31=0,105$.
    On obtient ainsi la loi de probabilité suivante:
    $\begin{array}{|c|c|c|c|}
    \hline
    y_i&3~120&2~760&2~400\\
    \hline
    P\left(Y=y_i\right)&0,585&0,31&0,105\\
    \hline
    \end{array}$
    $\quad$
    b. On a :
    $\begin{align*} E(Y)&=0,585\times 3~120+0,31\times 2~760+0,105\times 2~400\\
    &=2~932,8
    \end{align*}$
    Cela signifie donc qu’en moyenne un client payera $2~932,8$€ pour un aller-retour.
    $\quad$

[collapse]

$\quad$

Exercice 7     d’après Nouvelle Calédonie février 2018

Cette étude porte sur l’utilisation principale des véhicules du parc automobile français.
Les réponses seront arrondies au dix-millième.

Partie A

Les véhicules de la région parisienne représentent $16\%$ du parc automobile français en 2015.
$22\%$ des véhicules de la région parisienne sont utilisés principalement pour le trajet entre le domicile et le travail, $34\%$ pour les loisirs.
En province, $49\%$ des véhicules sont utilisés principalement pour le trajet entre le domicile et le travail, $31\%$ pour les loisirs.
On choisit un véhicule au hasard dans le parc automobile français.

On note :

  • $R$ l’événement : “le véhicule provient de la région parisienne”,
  • $\conj{R}$ l’événement : “le véhicule provient de la province”,
  • $T$ l’événement : “le véhicule est utilisé principalement pour le trajet entre le domicile et le travail”,
  • $L$ l’événement : “le véhicule est utilisé principalement pour les loisirs”,
  • $F$ l’événement : “le véhicule est utilisé principalement pour d’autres fonctions que le travail ou les loisirs”.

On rappelle que, si $A$ et $B$ sont deux événements, $p(A)$ désigne la probabilité de l’événement $A$ et $p_B(A)$ désigne la probabilité de l’événement $A$ sachant que l’événement $B$ est réalisé.

  1. Représenter la situation par un arbre de probabilité.
    $\quad$
  2. Montrer que la probabilité qu’un véhicule soit utilisé principalement pour le trajet entre le domicile et le travail est égale à $0,446~8$.
    $\quad$
  3. Madame Dupont et Monsieur Durand ont une conversation sur l’utilisation de leur véhicule. Madame Dupont dit utiliser principalement sa voiture pour les loisirs, Monsieur Durand principalement pour le trajet entre le domicile et le travail.
    Qui de Madame Dupont ou de Monsieur Durand a la plus grande probabilité d’habiter la région parisienne ?
    $\quad$

$\quad$

Partie B

On sélectionne un échantillon aléatoire de $10$ véhicules du parc automobile français. On note $X$ la variable aléatoire qui compte, dans cet échantillon, le nombre de véhicules utilisés principalement pour le trajet entre le domicile et le travail.

  1. Préciser la loi de probabilité de $X$ ainsi que ses paramètres.
    $\quad$
  2. Déterminer la probabilité qu’exactement deux véhicules soient utilisés principalement pour le trajet entre le domicile et le travail.
    $\quad$
  3. Déterminer la probabilité qu’au moins un véhicule soit utilisé principalement pour le trajet entre le domicile et le travail.
    $\quad$
Correction Exercice 7

Partie A

  1. On obtient l’arbre de probabilité suivant :
    $\quad$
  2. D’après la formule des probabilités totales on a :
    $\begin{align*} p(T)&=p(R\cap T)+p\left(\conj{R}\cap T\right) \\
    &=0,16 \times 0,22 + 0,84\times 0,49 \\
    &=0,446~8
    \end{align*}$
    $\quad$
  3. On calcule dans un premier temps, à l’aide de la formule des probabilités totales :
    $\begin{align*} p(L)&=p(R\cap L)+p\left(\conj{R}\cap L\right) \\
    &=0,16\times 0,34+0,84\times 0,31 \\
    &=0,314~8
    \end{align*}$
    Ainsi $p_L(R)=\dfrac{p(R\cap L)}{p(L)}=\dfrac{0,16\times 0,34}{0,314~8}\approx 0,172~8$
    et $p_T(R)=\dfrac{R\cap T)}{p(T)}=\dfrac{0,16\times 0,22}{0,446~8} \approx 0,078~8$
    Ainsi Madame Dupont a la plus grande probabilité d’habiter la région parisienne.
    $\quad$

Partie B

  1. Le nombre de véhicule du parc automobile français est suffisamment grand pour qu’on puisse assimiler le tirage à un tirage aléatoire avec remise.
    Les $10$ tirages sont également indépendants et possède chacun $2$ issues : $T$ et $\conj{T}$
    Ainsi la variable aléatoire $X$ suit la loi binomiale de paramètres $n=10$ et $p=0,446~8$.
    $\quad$
  2. $P(X=2)=\displaystyle \binom{10}{2}\times 0,446~8^2\times (1-0,446~8)^8\approx 0,078~8$
    $\quad$
  3. On veut calculer :
    $\begin{align*} P(X\pg 1)&=1-P(X=0) \\
    &=1-(1-0,446~8)^{10}\\
    &\approx 0,997~3
    \end{align*}$
    $\quad$

[collapse]