TS – Devoir synthèse 6 – 1er trimestre

Devoir Commun

TS – Décembre 2018 – 3h

Énoncé

Exercice 1     6 points

Dans cet exercice, on s’intéresse à une entreprise qui conditionne du sucre.

Les parties A et B peuvent être traitées de façon indépendante.
Dans tout l’exercice, les résultats seront arrondis, si nécessaire, à $10^{−4}$ près.

Partie A

L’entreprise conditionne des dosettes de sucre à mettre dans le café. Ces dosettes sont emballées dans du papier blanc ou du papier noir. Un grand nombre de ces dosettes est stocké dans une remise.
On sait que dans ce stock, la proportion de dosettes avec un emballage noir est de $0,4$.
On prélève au hasard dans ce stock $50$ dosettes en admettant que ce choix se ramène à $50$ tirages successifs indépendants et avec remise.
On note $X$ la variable aléatoire égale au nombre de dosettes emballées en noir.

  1. Quelle est la loi de probabilité de la variable aléatoire $X$ ? Justifier la réponse.
    $\quad$
  2. Déterminer la probabilité qu’exactement $20$ des $50$ dosettes prélevées soient emballées en noir.
    $\quad$
  3. Déterminer la probabilité qu’au moins la moitié des dosettes prélevées soient emballées en noir.
    $\quad$

Partie B

L’entreprise conditionne également du sucre blanc provenant de deux exploitations $U$ et $V$ en paquets de $1$ kg et de différentes qualités.
Le sucre «extra fin» est conditionné séparément dans des paquets portant le label «extra fin».

On admet que $3\%$ du sucre provenant de l’exploitation $U$ est extra fin et que $5\%$ du sucre provenant de l’exploitation $V$ est extra fin.
On prélève au hasard un paquet de sucre dans la production de l’entreprise et, dans un souci de traçabilité, on s’intéresse à la provenance de ce paquet.
On considère les événements suivants :

  • $U$: «Le paquet contient du sucre provenant de l’exploitation $U$»
  • $V$: «Le paquet contient du sucre provenant de l’exploitation $V$»
  • $E$: «Le paquet porte le label ”extra fin”»
  1. Dans cette question, on admet que l’entreprise fabrique $30\%$ de ses paquets avec du sucre provenant de l’exploitation $U$ et les autres avec du sucre provenant de l’exploitation $V$, sans mélanger les sucres des deux exploitations.
    a. Montrer que la probabilité que le paquet prélevé porte le label ”extra fin” est de $0,044$.
    $\quad$
    b. Sachant qu’un paquet porte le label ”extra fin”, quelle est la probabilité que le sucre qu’il contient provienne de l’exploitation $U$ ?
    $\quad$
  2. L’entreprise souhaite modifier son approvisionnement auprès des deux exploitations afin que parmi les paquets portant le label ”extra fin”, $30\%$ d’entre eux contiennent du sucre provenant de l’exploitation $U$.
    Comment doit-elle s’approvisionner auprès des exploitations $U$ et $V$?
    Toute trace de recherche sera valorisée dans cette question.

$\quad$

Exercice 2     7 points

Le directeur d’une réserve marine a recensé $3~000$ cétacés dans cette réserve au 1$\ier$ juin 2017.
Il est inquiet car il sait que le classement de la zone en « réserve marine » ne sera pas reconduit si le nombre de cétacés de cette réserve devient inférieur à $2~000$.

Une étude lui permet d’élaborer un modèle selon lequel, chaque année :

  • entre le 1$\ier$ juin et le 31 octobre, $80$ cétacés arrivent dans la réserve marine ;
  • entre le 1$\ier$ novembre et le 31 mai, la réserve subit une baisse de $5 \%$ de son effectif par rapport à celui du 31 octobre qui précède.

On modélise l’évolution du nombre de cétacés par une suite $\left(u_n\right)$. Selon ce modèle, pour tout entier naturel $n$, $u_n$ désigne le nombre de cétacés au 1$\ier$ juin de l’année 2017$+n$. On a donc $u_0 = 3~000$.

  1. Justifier que $u_1=2~926$.
    $\quad$
  2. Justifier que, pour tout entier naturel $n$, $u_{n+1}=0,95u_n+76$.
    $\quad$
  3. À l’aide d’un tableur, on a calculé les $8$ premiers termes de la suite $\left(u_n\right)$. Le directeur a configuré le format des cellules pour que ne soient affichés que des nombres arrondis à l’unité.
    Quelle formule peut-on entrer dans la cellule $C2$ afin d’obtenir, par recopie vers la droite, les termes de la suite $\left(u_n\right)$ ?
    $\quad$
  4. a. Démontrer que, pour tout entier naturel $n$, $u_n \pg 1~520$.
    $\quad$
    b. Démontrer que la suite $\left(u_n\right)$ est décroissante.
    $\quad$
    c. Justifier que la suite $\left(u_n\right)$ est convergente. On ne cherchera pas ici la valeur de la limite.
    $\quad$
  5. On désigne par $\left(v_n\right)$ la suite définie par, pour tout entier naturel $n$, $v_n=u_n-1~520$.
    a. Démontrer que la suite $\left(v_n\right)$ est une suite géométrique de raison $0,95$ dont on précisera le premier terme.
    $\quad$
    b. En déduire que, pour tout entier naturel $n$, $u_n=1~480\times 0,95^n+1~520$.
    $\quad$
    c. Déterminer la limite de la suite $\left(u_n\right)$.
    $\quad$
  6. Recopier et compléter l’algorithme suivant pour déterminer l’année à partir de laquelle le nombre de cétacés présents dans la réserve marine sera inférieur à $2~000$.
    $\begin{array}{|l|}
    \hline
    n \leftarrow 0\\
    u\leftarrow 3~000\\
    \text{Tant que } \ldots \ldots \\
    \hspace{1cm} \begin{array}{|l} n \leftarrow \ldots \ldots \\u \leftarrow \ldots \ldots \end{array} \\
    \text{Fin de Tant que }\\
    \hline
    \end{array}$
    la notation  « $\leftarrow$ » correspond à une affectation de valeur, ainsi « $n \leftarrow 0$ » signifie « Affecter à $n$ la valeur $0$ ».
    $\quad$
  7. La réserve marine fermera-t-elle un jour? Si oui, déterminer l’année de la fermeture.
    $\quad$

Exercice 3    7 points

Partie A

Voici deux courbes $\mathscr{C}_1$ et $\mathscr{C}_2$ qui donnent pour deux personnes $P_1$ et $P_2$ de corpulences différentes la concentration $C$ d’alcool dans le sang (taux d’alcoolémie) en fonction du temps $t$ après ingestion de la même quantité d’alcool. L’instant $t = 0$ correspond au moment où les deux individus ingèrent l’alcool.
$C$ est exprimée en gramme par litre et $t$ en heure.

Définition : La corpulence est le nom scientifique correspondant au volume du corps

 

  1. La fonction $C$ est définie sur l’intervalle $[0;+\infty[$ et on note $C’$ sa fonction dérivée. À un instant $t$ positif ou nul, la vitesse d’apparition d’alcool dans le sang est donnée par $C'(t)$.
    À quel instant cette vitesse est-elle maximale ?
    On dit souvent qu’une personne de faible corpulence subit plus vite les effets de l’alcool.
    $\quad$
  2. Sur le graphique précédent, identifier la courbe correspondant à la personne la plus corpulente. Justifier le choix effectué.
    $\quad$
  3. Une personne à jeun absorbe de l’alcool. On admet que la concentration $C$ d’alcool dans son sang peut être modélisée par la fonction $f$ définie sur $[0;+\infty[$ par $$f(t) = A t\e^{-t}$$ où $A$ est une constante positive qui dépend de la corpulence et de la quantité d’alcool absorbée.
    a. On note $f’$ la fonction dérivée de la fonction $f$. Déterminer $f'(0)$.
    $\quad$
    b. L’affirmation suivante est-elle vraie ?
    “À quantité d’alcool absorbée égale, plus $A$ est grand, plus la personne est corpulente.”
    $\quad$

Partie B – Un cas particulier

Paul, étudiant de 19 ans de corpulence moyenne et jeune conducteur, boit deux verres de rhum. La concentration $C$ d’alcool dans son sang est modélisée en fonction du temps $t$, exprimé en heure, par la fonction $f$ définie sur $[0;+\infty[$ par $$f(t) = 2 t\e^{-t}$$

  1. Étudier les variations de la fonction $f$ sur l’intervalle $[0;+\infty[$.
    $\quad$
  2. À quel instant la concentration d’alcool dans le sang de Paul est-elle maximale ? Quelle est alors sa valeur? Arrondir à $10^{-2}$ près.
    $\quad$
  3. Rappeler la limite de $\dfrac{e^t}{t}$ lorsque $t$ tend vers $+ \infty$ et en déduire celle de $f(t)$ en $+ \infty$.
    Interpréter le résultat dans le contexte de l’exercice.
    $\quad$
  4. Paul veut savoir au bout de combien de temps il peut prendre sa voiture. On rappelle que la législation autorise une concentration maximale d’alcool dans le sang de $0,2$ g.L$^{-1}$ pour un jeune conducteur.
    a. Démontrer qu’il existe deux nombres réels $t_1$ et $t_2$ tels que $f\left(t_1\right) = f\left(t_2\right) = 0,2$.
    $\quad$
    b. Quelle durée minimale Paul doit-il attendre avant de pouvoir prendre le volant en toute légalité ?
    Donner le résultat arrondi à la minute la plus proche.
    $\quad$

Ex 1

Exercice 1

Partie A

  1. On effectue $50$ tirages aléatoires, identiques et indépendants. Chaque tirage possède $2$ issues : $S$ “l’emballage est noir” et $\conj{S}$ “l’emballage n’est pas noir”. De plus $p(S)=0,4$
    La variable aléatoire $X$ suit donc la loi binomiale de paramètres $n=50$ et $p=0,4$.
    $\quad$
  2. On a $p(X=20)=\ds \binom{50}{20}\times 0,4^{20}\times 0,6^{30} \approx 0,114~6$.
    La probabilité qu’exactement $20$ dosettes prélevées soient emballées en noir est environ égale à $0,114~6$.
    $\quad$
  3. $p(X\pg 25)=1-p(X\pp 24) \approx 0,097~8$.
    La probabilité qu’au moins la moité des dosettes prélevées soient emballées en noir est environ égale à $0,097~8$.
    $\quad$

Partie B

  1. a. On a $p(U)=0,3$, $p(V)=0,7$, $p_U(E)=0,03$ et $p_V(E)=0,05$.
    D’après la formule des probabilités totales on a:
    $\begin{align*} p(E)&=p(U\cap E)+p(V\cap E) \\
    &=0,3\times 0,03+0,7\times 0,05 \\
    &=0,044
    \end{align*}$
    La probabilité que le paquet prélevé porte le label “extra fin” est $0,044$.
    $\quad$
    b. On veut calculer :
    $\begin{align*} p_E(U)&=\dfrac{p(E\cap U)}{p(E)} \\
    &=\dfrac{0,3\times 0,03}{0,044} \\
    &=\dfrac{9}{44}
    \end{align*}$
    $\quad$
  2. Soit $x$ un réel appartenant à $[0;1]$.
    On a $p(U)=x$, $p(V)=1-x$, $p_U(E)=0,03$ et $p_V(E)=0,05$.
    D’après la formule des probabilités totales on a:
    $\begin{align*} p(E)&=p(U\cap E)+p(V\cap E) \\
    &=0,03x+0,05(1-x) \\
    &=0,05-0,02x
    \end{align*}$
    On sait que :
    $\begin{align*} p_E(U)=0,3 &\ssi \dfrac{p(E\cap U)}{p(E)} =0,3\\
    &\ssi \dfrac{0,03x}{0,05-0,02x}=0,3 \\
    &\ssi 0,03x=0,015-0,006x \\
    &\ssi 0,036x=0,015 \\
    &\ssi x=\dfrac{5}{12}
    \end{align*}$
    Il faut donc que que $p(U)=\dfrac{5}{12}$ et $p(V)=\dfrac{7}{12}$
    $\quad$

Ex 2

Exercice 2

  1. On a $u_1=(1-0,05)\times (u_0+80)=0,95\times 3~080=2~926$.
    $\quad$
  2. $80$ cétacés arrivent dans la réserve sur la première période.
    On a ainsi $u_n+80$ cétacés.
    Il y a ensuite une de $5\%$ de son effectif sur une seconde période.
    Donc $u_{n+1}=0,95\left(u_n+80\right)=0,95u_n+76$.
    $\quad$
  3. On a pu saisir $=0,95*B2+76$.
    $\quad$
  4. a. Montrons ce résultat par récurrence.
    Initialisation : Si $n=0$ alors $u_0 = 3~000 \pg 1~520$.
    La propriété est vraie au rang $0$.
    $\quad$
    Hérédité : Supposons la propriété vraie au rang $n$ : $u_n \pg 1~520$.
    Montrons que la propriété est encore vraie au rang $n+1$, c’est-à-dire que $u_{n+1} \pg 1~520$
    $\begin{align*} u_n \pg 1~520 &\ssi 0,95u_n \pg 1~444 \\
    &\ssi 0,95u_n+76 \pg 1~520 \\
    &\ssi u_{n+1} \pg1~520
    \end{align*}$
    La propriété est donc vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Par conséquent, pour tout entier naturel $n$ on a $u_n\pg 1~520$.
    $\quad$
    b. Soit $n$ un entier naturel. On a alors :
    $\begin{align*} u_{n+1}-u_n&=0,95u_n+76-u_n \\
    &=-0,05u_n+76 \\
    &\pp 0,05\times 1~520+76 \\
    &\pp 0
    \end{align*}$
    La suite $\left(u_n\right)$ est donc décroissante.
    $\quad$
    c. La suite $\left(u_n\right)$ est décroissante et minorée par $1~520$. Elle converge donc.
    $\quad$
  5. a. Pour tout entier naturel $n$ on a $v_n=u_n-1~520 \ssi u_n=v_n+1~520$.
    $\begin{align*} v_{n+1}&=u_{n+1}-1~520 \\
    &=0,95u_n+76-1~520 \\
    &=0,95u_n-1~444 \\
    &=0,95\left(v_n+1~520\right)-1~444 \\
    &=0,95v_n+1~444-1~444 \\
    &=0,95v_n
    \end{align*}$
    La suite $\left(v_n\right)$ est donc géométrique de raison $0,95$ et de premier terme $v_0=u_0-1~520=1~480$.
    $\quad$
    b. Par conséquent, pour tout entier naturel $n$, on a :
    $v_n=1~480\times 0,95^n$ et $u_n=v_n+1~520=1~480\times 0,95^n+1~520$.
    $\quad$
    c. On a $-1<0,95<1$ donc $\lim\limits_{n \to +\infty} 0,95^n=0$.
    Par conséquent $\lim\limits_{n \to +\infty} u_n=1~520$.
    $\quad$
  6. On obtient l’algorithme :
    $\begin{array}{|l|}
    \hline
    n \leftarrow 0\\
    u \leftarrow 3~000 \\
    \text{Tant que } u>2~000 \\
    \hspace{1cm} \begin{array}{|l} n \leftarrow n+1 \\u \leftarrow 0,95\times u+76 \end{array} \\
    \text{Fin de Tant que }\\
    \hline
    \end{array}$
    $\quad$
  7. La suite $\left(u_n\right)$ est décroissante et tend vers $1~520<2~000$.
    La réserve marine fermera donc un jour.
    On veut déterminer la valeur du plus petit entier naturel $n$ tel que
    $\begin{align*} u_n \pp 2~000 &\ssi 1~480\times 0,95^n+1~520 \pp 2~000 \\
    &\ssi 1~480\times 0,95^n \pp 480 \\
    &\ssi 0,95^n \pp \dfrac{12}{37} \\
    &\ssi n\ln(0,95) \pp \ln \dfrac{12}{37} \\
    &\ssi n \pg \dfrac{\ln \dfrac{12}{37}}{\ln(0,95)}
    \end{align*}$
    Or $\dfrac{\ln \dfrac{12}{37}}{\ln(0,95)}\approx 21,95$.
    Donc $n \pg 22$.
    La réserve marine fermera en 2039.
    $\quad$

Ex 3

Exercice 3

Partie A

  1. La vitesse est maximale quand le coefficient directeur de la tangente en un point de la courbe $C$ est le plus grand. C’est donc pour $t=0$ que cette vitesse est maximale.
    $\quad$
  2. Plus la personne est corpulente moins, à quantité d’alcool ingérée égale, la concentration d’alcool dans le sang est importante. La courbe $\mathcal{C}_2$ correspond donc à la personne la plus corpulente.
    $\quad$
  3. a. $f$ est dérivable sur $[0;+\infty[$ en tant que produit de fonctions dérivables sur cet intervalle.
    $f'(t)=A\e^{-t}-At\e^{-t}$
    Donc $f'(0)=A$
    b. Si on appelle $f_1$ et $f_2$ les fonctions associées aux graphiques $\mathcal{C}_1$ et $\mathcal{C}_2$, on constate que $f’_1(0)>f’_2(0)$.
    Donc $A_1>A_2$ (où $A_i$ est la constante liée à la fonction $f_i$).
    Puisque la courbe $\mathcal{C}_2$ correspond à la personne ayant la forte corpulence, l’affirmation est fausse.
    $\quad$

Partie B – Un cas particulier

  1. D’après la question A.3. on a :
    $f'(t)=2\e^{-t}-2t\e^{-t}=2\e^{-t}(1-t)$.
    La fonction exponentielle est strictement positive.
    Le signe de $f'(t)$ ne dépend donc que de $(1-t)$.
    Or $1-t>0 \ssi t<1$.
    Donc $f$ est strictement croissante sur $[0;1]$ et strictement décroissante sur $[1;+\infty[$.
    $\quad$
  2. La concentration d’alcool dans le sang est donc maximale quand $t=1$.
    Et $f(1)=2\e^{-1}\approx 0,74$ g.L$^{-1}$.
    $\quad$
  3. On a $\lim\limits_{t\to +\infty} \dfrac{\e^t}{t}=+\infty$.
    Or $f(t)=2\dfrac{t}{\e^t}=2\dfrac{1}{\dfrac{\e^t}{t}}$.
    Donc $\lim\limits_{t \to +\infty} f(t)=0$.
    Cela signifie qu’au bout d’un très grand nombre d’heures la concentration d’alcool dans le sang est nulle et donc que l’alcool a disparu de l’organisme.
    $\quad$
  4. a. La fonction $f$ est continue (car dérivable) et strictement croissante sur $[0;1]$.
    $f(0)=0<0,2$ et $f(1) \approx 0,74>0,2$
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(t)=0,2$ possède une unique solution $t_1$ sur $[0;1]$.
    $\quad$
    On procède de même sur $[1;+\infty[$.
    La fonction $f$ est continue (car dérivable) et strictement croissante sur $[1;+\infty[$.
    $f(1) \approx 0,74>0,2$ et $\lim\limits_{t \to +\infty} f(t)=0<0,2$
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(t)=0,2$ possède une unique solution $t_2$ sur $[1;+\infty[$.
    $\quad$
    Il existe donc deux réels $t_1$ et $t_2$ tels que $f(t)=0,2$.
    $\quad$
    b. Sur $\left[t_1;t_2\right]$ $f(t)>0,2$ car $f$ est croissante sur $\left[t_1;1\right]$.
    Donc Paul ne pourra prendre le volant qu’après $t_2$.
    On obtient à l’aide de la calculatrice $t_2\approx 3,577$
    Il faut donc que Paul attendent $3$ heures et $35$ minutes avant de pouvoir reprendre le volant.
    $\quad$