E3C2 – Spécialité maths – Suites – 2020

Suites

E3C2 – 1ère

Dans un pays, le nombre de créations d’entreprise augmente $1,5\%$ par mois.
En janvier 2018 on compte $50~000$ créations d’entreprise.
On modélise le nombre de créations d’entreprise au $n$-ième mois par une suite $\left(u_n\right)$ telle que $u_{n+1}=u_n\times 1,015$ et $u_0=50$, $u_n$ est exprimé en milliers d’euros.

  1. a. Calculer $u_1$.
    $\quad$
    b. Interpréter ce résultat dans le contexte de l’exercice.
    $\quad$
  2. a. Quelle est la nature de la suite $\left(u_n\right)$ ?
    $\quad$
    b. Exprimer $u_n$ en fonction de $n$.
    $\quad$
    c. Un journaliste annonce qu’au total dans l’année 2018, près de $652~ 000$ entreprises se sont créées. Donner un calcul permettant de justifier les propos du journaliste.
    $\quad$

$\quad$

Correction Exercice

  1. a. On a $u_1=1,015\times 50=50,75$
    $\quad$
    b. En février 2018 on compte donc $50~750$ créations d’entreprise.
    $\quad$
  2. a. Pour tout entier naturel $n$ on a $u_{n+1}=1,015u_n$
    La suite $\left(u_n\right)$ est donc géométrique de raison $1,015$ et de premier terme $u_0=50$.
    $\quad$
    b. Pour tout entier naturel $n$ on a donc $u_n=50\times 1,015^n$.
    $\quad$
    c. On calcule :
    $\begin{align*} S&=u_0+u_1+\ldots +u_{11} \\
    &=50\times \dfrac{1-1,015^{12}}{1-1,015} \\
    &\approx 652\end{align*}$
    Il y a donc bien eu environ $652~000$ créations d’entreprise en 2018.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence