E3C – Séries technologiques – Automatismes – Janvier 2020

E3C – Automatismes

Séries technologiques

  1. À quelle évolution globale correspond une hausse de $20\%$ suivi d’une baisse de $30\%$ ?
    $\quad$
    Correction Question 1

    Le coefficient multiplicateur est :
    $\begin{align*} m&=\left(1+\dfrac{20}{100}\right)\left(1-\dfrac{30}{100}\right)\\
    &=1,2\times 0,7\\
    &=0,84\\
    &=1-0,16\end{align*}$
    Il s’agit donc, au global, d’une baisse de $16\%$.
    $\quad$

    [collapse]

    $\quad$
  2. Convertir $3,52$ h en heure minute seconde.
    $\quad$
    Correction Question 2

    $0,52$h $=0,52\times 60$ min $= 31,2$ min
    $0,2$ min $=0,2\times 60$ s $=12$ s.
    Ainsi $3,52$h $=3$h $31$min $12$s
    $\quad$

    [collapse]

    $\quad$
  3. Soit $(d)$ la droite d’équation réduite $y = -3x + 2$.
    Le point $B\left(\dfrac{1}{3};1\right)$ appartient-il à la droite $(d)$ ?
    $\quad$
    Correction Question 3

    $-3\times \dfrac{1}{3}+2=-1+2=1$ donc $B$ appartient à la droite $(d)$.
    $\quad$

    [collapse]

    $\quad$
  4. Développer et réduite l’expression suivante :
    $A(x)=(2x-1)^2+3x+2$
    $\quad$
    Correction Question 4

    $\begin{align*} A(x)&=(2x-1)^2+3x+2 \\
    &=(2x)^2-2\times 2x\times 1+1^2+3x+2\\
    &=4x^2-4x+1+3x+2\\
    &=4x^2-x+3\end{align*}$
    $\quad$

    [collapse]

    $\quad$
  5. Soit $f$ la fonction définie par la représentation graphique ci-dessous :

    Déterminer graphiquement l’ensemble des solutions de l’équation $f(x)=0$.
    $\quad$

    Correction Question 5

    L’ensemble solution cherché est, graphiquement, $\left\{-3;0;2;4\right\}$.
    $\quad$

    [collapse]

    $\quad$$\quad$
  6. Résoudre dans $\R$ l’inéquation d’inconnue $x$ suivante : $-2x-4\pg x+2$.
    $\quad$
    Correction Question 6

    $\begin{align*} -2x-4\pg x+2&\ssi -3x\pg 6\\
    &\ssi x\pp -2 \text{ on divise par $-3$ qui est négatif}\end{align*}$
    L’ensemble solution est donc $]-\infty;-2]$.
    $\quad$

    [collapse]

    $\quad$
  7. Quelle est la fraction irréductible égale à $\dfrac{3}{8}+\dfrac{5}{12}$?
    $\quad$
    Correction Question 7

    $\begin{align*}\dfrac{3}{8}+\dfrac{5}{12}&=\dfrac{9}{24}+\dfrac{10}{24} \\
    &=\dfrac{19}{24}\end{align*}$
    $\quad$

    [collapse]

    $\quad$
  8. On considère le calcul suivant : $0,003\times 1,5\times 10^8$.
    Donner le résultat en écriture scientifique.
    $\quad$
    Correction Question 8

    $\begin{align*}0,003\times 1,5\times 10^8&=3\times 10^{-3}\times 15\times 10^{-1}\times 10^8 \\
    &=45\times 10^4 \\
    &=4,5\times 10^5\end{align*}$
    $\quad$

    [collapse]

    $\quad$
  9. Résoudre dans $\R$ l’équation d’inconnue $x$ suivante : $$3x^2+1=13$$
    $\quad$
    Correction Question 9

    $\begin{align*}3x^2+1=13&\ssi 3x^2=12\\
    &\ssi x^2=4\\
    &\ssi x=2 \text{ ou } x=-2\end{align*}$
    $\quad$

    [collapse]

    $\quad$
  10. Les tailles des élèves d’une classe de terminale ont été représentées par l’histogramme ci‐dessous :

    Trois élèves ont une taille inférieure à $160$ cm.
    Déterminer le nombre d’élèves dans cette classe de terminale.
    $\quad$
    Correction Question 10

    $6$ “petits rectangles” représentent donc $3$ élèves.
    Donc $2$ “petits rectangles” représentent $1$ élève.
    Il y a par conséquent $33$ élèves dans cette classe.
    $\quad$

    [collapse]

    $\quad$

Les sujets proviennent de la banque nationale de sujets sous licence