E3C – Séries technologiques – Automatismes – EC2

E3C – Automatismes

Séries technologiques

  1. Le nombre d’adhérents d’un club de sport est passé de 250 en 2018 à 210 en 2019.
    Déterminer le taux d’évolution du nombre d’adhérents entre 2018 et 2019.
    $\quad$
    Correction Question 1

    $\dfrac{210-250}{250}=\dfrac{-40}{250}=-\dfrac{4}{25}=-\dfrac{16}{100}$
    Le taux d’évolution du nombre d’adhérents est donc de $-16\%$.
    $\quad$

    [collapse]

    $\quad$
  2. Développer $(x-3)(2x+5)$
    $\quad$
    Correction Question 2

    $\begin{align*} (x-3)(2x+5)&=2x^2+5x-6x-15\\
    &=2x^2-x-15\end{align*}$
    $\quad$

    [collapse]

    $\quad$

On considère la fonction affine $g$ définie sur $\R$ par $g(x)=3x-6$.

  1. Calculer $g\left(\dfrac{2}{7}\right)$.
    $\quad$
    Correction Question 3

    $\begin{align*} g\left(\dfrac{2}{7}\right)&=3\times \dfrac{2}{7}-6\\
    &=\dfrac{6}{7}-\dfrac{42}{7}\\
    &=-\dfrac{36}{7}\end{align*}$

    [collapse]

    $\quad$
  2. Déterminer l’antécédent de $2$ par la fonction $g$.
    $\quad$
    Correction Question 4

    On veut résoudre l’équation :
    $\begin{align*} 3x-6=2&\ssi 3x=8 \\
    &\ssi x=\dfrac{8}{3}\end{align*}$
    L’antécédent de $2$ par la fonction $g$ est $\dfrac{8}{3}$.
    $\quad$

    [collapse]

    $\quad$
  3. Donner le tableau de signes de $g$ sur $\R$.
    $\quad$
    Correction Question 5

    $3x-6=0 \ssi 3x=6 \ssi x=2$ et $3x-6>0\ssi 3x>6\ssi x>2$
    On obtient le tableau de signes suivant :

    $\quad$

    [collapse]

    $\quad$

    $\quad$

On a tracé dans le repère ci-dessous une droite $D$ et $C_f$, la courbe représentative d’une fonction $f$ définie sur $[-1;6]$. Répondre aux
questions suivantes par lecture graphique :

  1. Donner le tableau de signes de la fonction 𝑓 sur l’intervalle $[-1;6]$.
    $\quad$
    Correction Question 6

    D’après le graphique on obtient le tableau de signes suivant :$\quad$

    [collapse]

    $\quad$
  2. Déterminer $f(3)$.
    $\quad$
    Correction Question 7

    Graphiquement $f(3)=6$.
    $\quad$

    [collapse]

    $\quad$
  3. Résoudre $f(x)=6$.
    $\quad$
    Correction Question 8

    Deux points de la courbe $C_f$ ont pour ordonnées $6$ : celui d’abscisse $3$ et celui d’abscisse $5$.
    Les solutions de l’équation sont donc $3$ et $5$.
    $\quad$

    [collapse]

    $\quad$
  4. Résoudre $f(x)\pg 3$.
    $\quad$
    Correction Question 9

    D’après le graphique, $f(x)\pg 3$ pour tout $x\pg 2$.
    L’ensemble solution est donc $[2;6]$.
    $\quad$

    [collapse]

    $\quad$
  5. Donner une équation de la droite $D$.
    $\quad$
    Correction Question 10

    L’ordonnée à l’origine est $4$.
    Pour un déplacement d’une unité vers la droite on descend de $2$ unités. Le coefficient directeur est donc $-2$.
    Une équation de la droite $D$ est par conséquent $y=-2x+4$.
    $\quad$

    [collapse]

    $\quad$

Les sujets proviennent de la banque nationale de sujets sous licence