E3C2 – Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Cet exercice est un questionnaire à choix multiple (QCM). Pour chaque question, une seule des quatre réponses proposées est exacte. Une bonne réponse rapporte un point. Une mauvaise réponse, une réponse multiple ou l’absence de réponse ne rapporte ni n’enlève aucun point.
Relevez sur votre copie le numéro de la question ainsi que la lettre correspondant à la réponse choisie. Aucune justification n’est demandée.

Question 1

On considère une fonction $f$ définie sur $R$ par : $f(x)=ax^2+bx+c$, où $a$, $b$ et $c$ sont des nombres réels. $\Delta$ désigne la quantité $b^2-4ac$.
Parmi les affirmations suivantes, laquelle est cohérente avec la représentation graphique, ci-dessous, de cette fonction ?

a. $a>0$ et $\Delta>0$
b. $a<0$ et $\Delta<0$
c. $a>0$ et $\Delta<0$
d. $a<0$ et $\Delta>0$

$\quad$

Correction Question 1

La fonction $f$ admet un minimum donc $a>0$.
La courbe $\mathcal{C}$ coupe l’axe des abscisses en deux points donc $\Delta >0$.

Réponse a

$\quad$

[collapse]

$\quad$

Question 2

Lors d’un jeu, on mise $1$ euro et on tire une carte au hasard parmi $30$ cartes numérotées de $1$ à $30$. On gagne $3$ euros si le nombre porté sur la carte est premier, sinon, on ne gagne rien. On détermine le gain algébrique en déduisant le montant de la mise de celui du gain.
On note $X$ la variable aléatoire qui prend pour valeur le gain algébrique. Que vaut l’espérance $E(X)$de la variable aléatoire $X$ ?

a. $\dfrac{1}{3}$
b. $\dfrac{1}{10}$
c. $0$
d. $\dfrac{2}{3}$

$\quad$

Correction Question 2

Les nombres premiers compris entre $1$ et $30$ sont : $2$, $3$, $5$, $7$, $11$, $13$, $17$, $19$ $23$, $29$.
Ainsi :
$\begin{align*}P(X=2)&=\dfrac{10}{30} \\
&=\dfrac{1}{3}\end{align*}$
$\begin{align*} P(X=-1)&=1-\dfrac{1}{3}\\
&=\dfrac{2}{3}\end{align*}$
Par conséquent :
$\begin{align*} E(X)&=-1\times P(X=-1)+2P(X=2)\\
&=-\dfrac{2}{3}+2\times \dfrac{1}{3}\\
&=0\end{align*}$

Réponse c

$\quad$

[collapse]

$\quad$

Question 3

Quelle est la valeur exacte de $\dfrac{\e^6\times \e^3}{\e^2}$?

a. $\e^{11}$
b. $\e^{9}$
c. $\e^{7}$
d. $\e^{-7}$

$\quad$

Correction Question 3

$\begin{align*} \dfrac{\e^6\times \e^3}{\e^2}&=\dfrac{\e^{6+3}}{\e^2}\\
&=\dfrac{\e^9}{\e^2}\\
&=\e^{9-2}\\
&=\e^7\end{align*}$

Réponse c

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

On considère la suite arithmétique $\left(u_n\right)$ de raison $-5$ et telle que $u_1=2$. Quelle est, pour tout entier naturel $n$, l’expression du terme général $u_n$ de cette suite ?

a. $u_n=2-5n$
b. $u_n=-5+2n$
c. $u_n=7-5n$
d. $u_n=2\times (-5)^n$

$\quad$

Correction Question 4

On a :
$\begin{align*} u_0&=u_1-(-5) \\
&=2+5\\
&=7\end{align*}$

Ainsi, pour tout entier naturel $n$, on a $u_n=7-5n$.

Réponse c

$\quad$

[collapse]

$\quad$

Question 5

Les équations cartésiennes ci-dessous sont celles de droites données du plan. Le vecteur $\vec{u}\begin{align*} -1\\2\end{align*}$) est un vecteur normal à l’une de ces droites. Quelle est l’équation de cette droite ?

a. $2x+y+5=0$
b. $x+2y+3=0$
c. $-x+0,5y+2=0$
d. $-4x+8y=0$

$\quad$

Correction Question 5

Une équation cartésienne dont $\vec{u}$ est un vecteur normal est de la forme $-x+2y+c=0$.
Donc $-4x+8y+d=0$ est également un équation cartésienne pour ce type de droite.

En prenant $d=0$ on obtient l’équation $-4x+8y=0$.

Réponse d

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence