E3C2 – Spécialité maths – Géométrie repérée – 2020

Géométrie repérée

E3C2 – 1ère

Soit $\Oij$ un repère orthonormé.
On considère le cercle $\mathcal{C}$ de centre $A(2 ; 5)$ et de rayon $5$.

  1. Montrer qu’une équation du cercle $\mathcal{C}$ est : $x^2+y^2-4x-10y=-4$.
    $\quad$
  2. Vérifier que le point $B(5; 9)$ appartient à ce cercle.
    $\quad$
  3. Que peut-on dire de la tangente au cercle au point $B$ et de la droite $(AB)$ ?
    $\quad$
  4. Déterminer une équation de la tangente au cercle au point $B$.
    $\quad$
  5. Calculer les coordonnées des points d’intersection du cercle $\mathcal{C}$ avec l’axe des ordonnées.
    $\quad$

$\quad$

Correction Exercice

  1. Une équation du cercle $\mathcal{C}$ est :
    $\begin{align*} &(x-2)^2+(y-5)^2=5^2 \\
    \ssi~&x^2-4x+4+y^2-10x+25=25\\
    \ssi~&x^2-4x+y^2-10x=-4\end{align*}$
    $\quad$
  2. Si $x=5$ et $y=9$ alors
    $\begin{align*} x^2-4x+y^2-10x=25-20+81-90 \\
    &=-4\end{align*}$
    Donc $B$ appartient au cercle $\mathcal{C}$.
    $\quad$
  3. $[AB]$ est un rayon du cercle $\mathcal{C}$.
    Par conséquent la tangente au cercle au point $B$ est perpendiculaire à la droite $(AB)$.
    $\quad$
  4. Le vecteur $\vect{AB}$ est donc normal à la tangente $(d)$ au cercle au point $B$.
    $\vect{AB}\begin{pmatrix} 3\\4\end{pmatrix}$.
    Une équation de $(d)$ est alors d la forme $3x+4y+c=0$
    Le point $B(5;9)$ appartient à cette droite.
    Par conséquent $15+36+c=0 \ssi c=-51$.
    Une équation de $(d)$ est $3x+4y-51=0$.
    $\quad$
  5. Les points d’intersection du cercle $\mathcal{C}$ avec l’axe des ordonnées ont une abscisse nulle.
    Ainsi leur ordonnées sont solution de l’équation $y^2-10y+4=0$.
    Le discriminant est :
    $\begin{align*} \Delta&=(-10)^2-4\times 1\times 4 \\
    &=84\\
    &>0\end{align*}$
    Les racines sont donc :
    $\begin{align*} y_1&=\dfrac{10-\sqrt{84}}{2}\\
    &=5-\sqrt{21}\end{align*}$ $\quad$ et $\quad$ $\begin{align*} y_1&=\dfrac{10+\sqrt{84}}{2}\\
    &=5+\sqrt{21}\end{align*}$
    Ainsi les points d’intersection du cercle $\mathcal{C}$ avec l’axe des ordonnées ont pour coordonnées $\left(0;5-\sqrt{21}\right)$ et $\left(0;5+\sqrt{21}\right)$.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend 5 questions indépendantes. Pour chacune d’elles, une seule des réponses proposées est exacte.
Indiquer pour chaque question sur la copie la lettre correspondant à la réponse choisie.
Aucune justification n’est demandée.
Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une absence de réponse n’apporte ni ne retire de point.

Question 1

L’équation $2x^2-8x+6=0$ admet deux solutions. Leur somme $S$ et leur produit $P$ sont :

a. $S=-8$ et $P=6$
b. $S=-4$ et $P=3$
c. $S=4$ et $P=3$
d. $S=3$ et $P=-4$

$\quad$

Correction Question 1

$2x^2-8x+6=0 \ssi x^2-4x+3=0$
Donc $P=3$ et $S=4$

Réponse c

$\quad$

[collapse]

$\quad$

Question 2

$\alpha$ est un nombre réel tel que $\sin(\alpha)=0,5$. On a alors :

a. $\sin(\pi-\alpha)=0,5$
b. $\sin(\pi-\alpha)=-0,5$
c. $\sin(\pi-\alpha)=-\dfrac{\sqrt{3}}{2}$
d. $\sin(\pi-\alpha)=\dfrac{\pi}{6}$

$\quad$

Correction Question 2

Pour tout réel $x$ on a $\sin(\pi-x)=\sin(x)$
Donc $\sin(\pi-\alpha)=0,5$.

Réponse a

[collapse]

$\quad$

Question 3

Dans un repère orthonormé du plan, on considère le cercle d’équation : $$(x-3)^2+(y+0,5)^2=\dfrac{25}{4}$$
On peut affirmer que :

a. ce cercle a un rayon de $6,25$.
b. ce cercle passe par le point $R(5 ; -2)$.
c. le centre de ce cercle a pour coordonnées $(-3 ; 0,5)$
d. aucune des réponses a., b. ou c. n’est correcte.

$\quad$

Correction Question 3

Le rayon du cercle est $R=\sqrt{\dfrac{25}{4}}=2,5$.
$(5-3)^2+(-2+0,5)^2=6,25$ donc $(5-3)^2+(-2+0,5)^2=\dfrac{25}{4}$

Réponse B

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

Dans un repère orthonormé du plan, une équation cartésienne de la droite passant par le point $A(2 ; -4)$ et de vecteur normal $\vec{n}(5 ; 6)$ est :

a. $6x-5y-32=0$
b. $6x+5y8=0$
c. $5x+6y+14=0$
d. $5x+6y-14=0$

$\quad$

Correction Question 4

Une équation de cette droite est de la forme $5x+6y+c=0$.
$A(2;-4)$ appartient à cette droite.
Donc $10-24+c=0\ssi c=14$

Réponse c

$\quad$

[collapse]

$\quad$

Question 5

On considère la fonction $f$ définie sur $\R$ par $f(x)=(2x+3)\e^x$.
La fonction dérivée de la fonction $f$ est notée $f’$. On a alors :

a. $f'(x)=2\e^x$
b. $f'(x)=(2x+3)\e^x$
c. $f'(x)=(2x+1)\e^x$
d. $f'(x)=(2x+5)\e^x$

$\quad$

Correction Question 5

La fonction $f$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
Pour tout réel $x$ on a :
$\begin{align*} f'(x)&=2\e^x+(2x+3)\e^x \\
&=(2+2x+3)\e^x\\
&=(2x+5)\e^x\end{align*}$

Réponse d

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend 5 questions indépendantes. Pour chacune d’elles, une seule des réponses proposées est exacte.
Indiquer pour chaque question sur la copie la lettre correspondant à la réponse choisie.
Aucune justification n’est demandée.
Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une absence de réponse n’apporte ni ne retire de point.

Question 1

Pour tout entier naturel $n$, on définit la suite $\left(u_n\right)$ par $u_n=3\times \dfrac{10^n}{2^{n+1}}$.
La suite $\left(u_n\right)$ est une suite :

a.arithmétique de raison $3$.
b. géométrique de raison $3$.
c. arithmétique de raison $5$.
d. géométrique de raison $5$.

$\quad$

Correction Question 1

Pour tout entier naturel $n$ on a :
$\begin{align*} u_n&=3\times\dfrac{10^n}{2^{n+1}} \\
&=\dfrac{3}{2}\times\dfrac{10^n}{2^n} \\
&=\dfrac{3}{2}\times 5^n\end{align*}$
La suite $\left(u_n\right)$ est donc géométrique de raison $5$.

Réponse d

$\quad$

[collapse]

$\quad$

Question 2

Dans un repère orthonormé$\Oij$ du plan, on considère les points $A(-2; 1)$ et $B(2; 4)$.
La droite $\Delta$ passe par le point $C(-1; 1)$ et admet le vecteur $\vect{AB}$ pour vecteur normal.
La droite $\Delta$ admet pour équation cartésienne :

a. $3x-4y+7=0$
b. $4x+3y+1=0$
c. $3x-4y-1=0$
d. $4x+3y+7=0$

$\quad$

Correction Question 2

On a $\vect{AB}\begin{pmatrix}4\\3\end{pmatrix}$. Une équation de la droite $\Delta$ est donc de la forme $4x+3y+c=0$.
Le point $C(-1;1)$ appartient à cette droite. Ainsi :
$-4+3+c=0 \ssi c=1$
Une équation de la droite $\Delta$ est donc $4x+3y+1=0$.

Réponse b

$\quad$

[collapse]

$\quad$

Question 3

Dans l’intervalle $\left[0;\dfrac{\pi}{2}\right]$, l’unique solution de l’équation $2\cos(x+\pi)+1=0$ est :

a. $\dfrac{\pi}{3}$
b. $-\dfrac{5\pi}{3}$
c. $\dfrac{\pi}{6}$
d. $\dfrac{2\pi}{3}$

$\quad$

Correction Question 3

$\begin{align*} 2\cos(x+\pi)+1=0&\ssi -2\cos(x)+1=0\\
&\ssi \cos(x)=\dfrac{1}{2}\end{align*}$

Donc, dans l’intervalle $\left[0;\dfrac{\pi}{2}\right]$, la solution est $\dfrac{\pi}{3}$.

Réponse a

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

On considère la fonction $f$ définie et dérivable sur $\R$ par $f(x)=\dfrac{\e^x}{1+\e^x}$.
La fonction dérivée $f’$ de la fonction $f$ est définie par :

a. $f'(x)=\dfrac{\e}{1+\e}$
b. $f'(x)=\dfrac{\e^x}{\left(1+\e^x\right)^2}$
c. $f'(x)=1$
d. $f'(x)=\dfrac{-\e^x}{\left(1+\e^x\right)^2}$

$\quad$

Correction Question 4

Pour tout réel $x$ on a :
$\begin{align*} f'(x)&=\dfrac{\e^x\left(1+\e^x\right)-\e^x\times \e^x}{\left(1+\e^x\right)^2} \\
&=\dfrac{\e^x}{\left(1+\e^x\right)^2}\end{align*}$

Réponse a

$\quad$

[collapse]

$\quad$

Question 5

On considère la fonction $f$ définie sur $\R$ par : $f(x)=-0,5(x+2)^2+4,5$.
On peut affirmer que :

a. Le tableau de variations de la fonction $f$ est donné ci-dessous:

b.
La courbe représentative de la fonction $f$ admet un sommet de coordonnées $(4,5; -2)$.
c. Le signe de $f(x)$ est donné ci-dessous :

d. La fonction $f$ admet un minimum en $-2$ égal à $4,5$

$\quad$

Correction Question 5

On a $f(x)=-0,5\left(x-(-2)\right)^2+4,5$
Le coefficient principal est $a=-0,5<0$. La fonction $f$ admet donc un maximum dont l’abscisse est $-2$. On exclut donc les réponses a.b., et d.

Réponse c

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend 5 questions indépendantes. Pour chacune d’elles, une seule des affirmations proposées est exacte.
Indiquer pour chaque question sur la copie la lettre correspondant à la réponse choisie.
Aucune justification n’est demandée.
Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une absence de réponse n’apporte ni ne retire de point.

Question 1

On considère la droite $d$ dont une équation cartésienne dans un repère orthonormé est $2x-3y+4=0$.

a. Un vecteur directeur de $d$ est $\vec{u}\begin{pmatrix}-6\\4\end{pmatrix}$
d. Un vecteur normal de $d$ est $\vec{n}\begin{pmatrix}-12\\18\end{pmatrix}$
c. Le point $C(-5;2)$ appartient à la droite $d$.
d. La droite $d$ coupe la droite d’équation $-x+3y-2=0$ au point $F(1;2)$.

$\quad$

Correction Question 1

Un vecteur directeur de $d$ est $\vec{v}\begin{pmatrix}3\\2\end{pmatrix}$. Ainsi $-2\vec{v}\begin{pmatrix}-6\\-4\end{pmatrix}$ est également un vecteur directeur de $d$. On exclut donc la réponde a.

Un vecteur normal de $d$ est $\vec{m}\begin{pmatrix}2\\-3\end{pmatrix}$.
Ainsi $-6\vec{m}=\vec{n}$ est également un vecteur normal de $d$.

Réponse b

$\quad$

[collapse]

$\quad$

Question 2

Dans un repère orthonormé le cercle $\mathcal{C}$ a pour équation $x^2-2x+y^2+y=3$ et la droite $D$ pour équation $y = 1$.

a. $\mathcal{C}$ et $D$ n’ont aucun point d’intersection.
b. $\mathcal{C}$ et $D$ ont un seul point d’intersection.
c. $\mathcal{C}$ et $D$ ont deux points d’intersection.
d. On ne peut pas savoir combien $\mathcal{C}$ et $D$ ont de points d’intersection.

$\quad$

Correction Question 2

On veut résoudre le système suivant :
$\begin{align*} \begin{cases} x^2-2x+y^2+y=3\\y=1\end{cases} &\ssi \begin{cases} x^2-2x+1+1=3\\y=1\end{cases} \\
&\ssi \begin{cases} x^2-2x-1=0\\y=1\end{cases} \end{align*}$
Le discriminant de $x^2-2x-1=0$ est :
$\begin{align*} \Delta&=(-2)^2-4\times 1\times (-1) \\
&=8\\
&>0\end{align*}$
L’équation possède donc deux solutions réelles et le système précédent également

Réponse c

$\quad$

[collapse]

$\quad$

Question 3

La fonction $f$ est la fonction définie sur l’ensemble des réels par $f(x)=\cos(2x)$.

a. $f$ est paire.
b. $f$ est impaire.
c. $f$ n’est ni paire ni impaire.
d. $f$ a pour période $\dfrac{\pi}{2}$.

$\quad$

Correction Question 3

Pour tout réel $x$ on a :
$\begin{align*} f(-x)&=\cos(-2x)\\
&=\cos(2x)\\
&=f(x)\end{align*}$
La fonction $f$ est donc paire.

Réponse a

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

Soit la suite $\left(u_n\right)$ définie par $u_0=1$ et pour tout entier naturel $n$ par $u_{n+1}=\dfrac{1}{2}\left(u_n+\dfrac{2}{u_n}\right)$.
On définit en langage Python une fonction « Suite » pour calculer $u_n$ connaissant $n$.

$\begin{array}{|l|l|l|l|}
\hline
\textbf{a.}& \begin{array}{l}
\textcolor{blue}{\text{def }}\text{suite(n):}\\
\hspace{0.5cm}\text{u=}\textcolor{Emerald}{0}\\
\hspace{0.5cm} \textcolor{blue}{\text{for }}\text{i }\textcolor{blue}{\text{in range }}\text{(}\textcolor{Emerald}{1}\text{,n+}\textcolor{Emerald}{1}\text{):}\\
\hspace{1cm}\text{u=}\textcolor{Emerald}{1}\text{/}\textcolor{Emerald}{2}\text{*(u+}\textcolor{Emerald}{2}\text{/u)}\\
\hspace{0.5cm}\textcolor{blue}{\text{return }}\text{u}\end{array}
&
\textbf{b.}&\begin{array}{l}
\textcolor{blue}{\text{def }}\text{suite(n):}\\
\hspace{0.5cm}\text{u=}\textcolor{Emerald}{1}\\
\hspace{0.5cm} \textcolor{blue}{\text{for }}\text{i }\textcolor{blue}{\text{in range }}\text{(}\textcolor{Emerald}{1}\text{,n+}\textcolor{Emerald}{1}\text{):}\\
\hspace{1cm}\text{u=}\textcolor{Emerald}{1}\text{/}\textcolor{Emerald}{2}\text{*(u+}\textcolor{Emerald}{2}\text{/u)}\\
\hspace{0.5cm}\textcolor{blue}{\text{return }}\text{n}\end{array}\\\hline
\textbf{c.}&\begin{array}{l}
\textcolor{blue}{\text{def }}\text{suite(n):}\\
\hspace{0.5cm}\text{u=}\textcolor{Emerald}{1}\\
\hspace{0.5cm} \textcolor{blue}{\text{for }}\text{i }\textcolor{blue}{\text{in range }}\text{(}\textcolor{Emerald}{1}\text{,n+}\textcolor{Emerald}{1}\text{):}\\
\hspace{1cm}\text{u=}\textcolor{Emerald}{1}\text{/}\textcolor{Emerald}{2}\text{*u+}\textcolor{Emerald}{2}\text{/u}\\
\hspace{0.5cm}\textcolor{blue}{\text{return }}\text{u}\end{array}&
\textbf{d.}&\begin{array}{l}
\textcolor{blue}{\text{def }}\text{suite(n):}\\
\hspace{0.5cm}\text{u=}\textcolor{Emerald}{1}\\
\hspace{0.5cm} \textcolor{blue}{\text{for }}\text{i }\textcolor{blue}{\text{in range }}\text{(}\textcolor{Emerald}{1}\text{,n+}\textcolor{Emerald}{1}\text{):}\\
\hspace{1cm}\text{u=}\textcolor{Emerald}{1}\text{/}\textcolor{Emerald}{2}\text{*(u+}\textcolor{Emerald}{2}\text{/u)}\\
\hspace{0.5cm}\textcolor{blue}{\text{return }}\text{u}\end{array}\\\hline\end{array}$

$\quad$

Correction Question 4

Le premier terme est $u_0=1$ : on exclut la réponse a.
La fonction doit renvoyer la valeur de $u_n$ : on exclut la réponse b.
Il manque les parenthèses pour le calcul de $\text{u}$ dans la réponse c.

Réponse d

$\quad$

[collapse]

$\quad$

Question 5

L’équation $\e^x=1$:

a. n’a pas de solution.
b. a pour solution le nombre $1$.
c. a pour solution le nombre $0$.
d. a pour solution le nombre $\e$.

$\quad$

Correction Question 5

On a $e^0=1$.

Réponse c

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

 

E3C2 – Spécialité maths – Géométrie repérée – 2020

Géométrie repérée

E3C2 – 1ère

Dans un repère orthonormé, on considère les points $A(-1 ; 3)$, $B(5 ; 0)$ et $C(9 ; 3)$.

  1. Déterminer une équation cartésienne de la droite $(AB)$.
    $\quad$
  2. Déterminer une équation cartésienne de la droite $D$ passant par le point $C$ et de vecteur normal $\vec{n}\begin{pmatrix}-1\\3\end{pmatrix}$.
    $\quad$
  3. Démontrer que les droites $D$ et $(AB)$ ne sont pas parallèles.
    $\quad$
    On admet que le point $E(3 ; 1)$ est le point d’intersection de ces deux droites.
  4. Les droites $D$ et $(AB)$ sont-elles perpendiculaires ?
    $\quad$
  5. On donne $AE = 2\sqrt{5}$ et $EC = 2\sqrt{10}$.
    Calculer la mesure en degrés de l’angle $\widehat{AEC}$.
    $\quad$

$\quad$

Correction Exercice

  1. Un vecteur directeur de la droite $(AB)$ est $\vect{AB}\begin{pmatrix}6\\-3\end{pmatrix}$.
    Ainsi une équation cartésienne de la droite $(AB)$ est de la forme $-3x-6y+c=0$.
    $A(-1;3)$ appartient à cette droite.
    Donc $3-18+c=0\ssi c=15$.
    Une équation cartésienne de la droite $(AB)$ est $-3x-6y+15=0$ ou encore $x+2y-5=0$.
    $\quad$
  2. Une équation cartésienne de la droite $D$ est de la forme $-x+3y+c$.
    $C(9;3)$ appartient à la droite $D$.
    Donc $-9+9+c=0\ssi c=0$.
    Une équation cartésienne de la droite $D$ est donc $-x+3y=0$.
    $\quad$
  3. Un vecteur directeur de la droite $D$ est $\vec{u}\begin{pmatrix}-3\\-1\end{pmatrix}$.
    Un vecteur directeur de la droite $(AB)$ est $\vect{AB}\begin{pmatrix}6\\-3\end{pmatrix}$.
    det$\left(\vec{u};\vect{AB}\right)=-3\times -3-(-1)\times 6=15\neq 0$.
    Ces vecteurs ne sont pas colinéaires.
    Par conséquent, les droites $D$ et $(AB)$ ne sont pas parallèles.
    $\quad$
  4. $\vect{AE}\begin{pmatrix}4;-2\end{pmatrix}$ et $\vect{CE}\begin{pmatrix}-6;-2\end{pmatrix}$.
    Par conséquent :
    $\begin{align*} \vect{AE}.\vect{CE}&=4\times (-6)+(-2)\times (-2) \\
    &=-24+4\\
    &=-20\\
    &\neq 0\end{align*}$
    Les droites $(D)$ et $(AB)$ ne sont donc pas perpendiculaires.
    Remarque : On pouvait calculer également $\vect{AB}.\vec{u}$ ou det$\left(\vec{n};\vect{AB}\right)$ mais on besoin du produit scalaire $\vect{AE}.\vect{CE}$ à la question suivante.
    $\quad$
  5. On a $\vect{AE}.\vect{CE}=-20$
    et $\vect{AE}.\vect{CE}=AE\times EC\times \cos \widehat{AEC}$
    Par conséquent :
    $\begin{align*} &2\sqrt{5}\times 2\sqrt{10}\cos\widehat{AEC}=-20 \\
    \ssi~& \cos \widehat{AEC}=-\dfrac{20}{20\sqrt{2}} \\
    \ssi~& \cos \widehat{AEC}=-\dfrac{\sqrt{2}}{2}\end{align*}$
    Par conséquent $\widehat{AEC}=135$°
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend 5 questions indépendantes. Pour chacune d’elles, une seule des réponses proposées est exacte.
Indiquer pour chaque question sur la copie la lettre correspondant à la réponse choisie. Aucune justification n’est demandée.
Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une absence de réponse n’apporte ni ne retire de point.

Question 1

L’inéquation $-3(x-2)(x + 1) > 0$ admet pour ensemble des solutions :

a. $[-1;2]$
b. $]-\infty;-1[\cup[2;+\infty[$
c. $]-1;2[$
d. $]-\infty;-1[\cup]2;+\infty[$

$\quad$

Correction Question 1

On a $-3(x-2)(x+1)=-3x^2+3x+6$
Les racines de ce polynôme du second degré sont $2$ et $-1$ et le coefficient principal est $a=-3<0$.
Ainsi l’inéquation $-3(x-2)(x + 1) > 0$ admet pour ensemble des solutions est $]-1;2[$.

Réponse c

$\quad$

[collapse]

$\quad$

Question 2

Soit $x$ un nombre réel. Le réel $\cos(x+ 3\pi)$ est égal à :

a. $\cos(x)$
b. $-\cos(x)$
c. $\sin(x)$
d. $-\sin(x)$

$\quad$

Correction Question 2

Pour tout réel $x$ on a :
$\begin{align*} \cos(x+3\pi) &=\cos(x+2\pi+\pi)\\
&=\cos(x+\pi)\\
&=-\cos(x)\end{align*}$

[collapse]

$\quad$

Question 3

Dans un repère orthonormé, on considère la droite 𝑑 passant par le point $A(1; 2)$ et dont un vecteur normal est le vecteur $\vec{v}\begin{pmatrix}2\\-3\end{pmatrix}$. Une équation de la droite $d$ est :

a. $2x+3y-8=0$
b. $x+2y+4=0$
c. $2x-3y-4=0$
d. $y=\dfrac{2}{3}x+\dfrac{4}{3}$

$\quad$

Correction Question 3

Une équation de la droite $d$ est de la forme $2x-3y+c=0$.
Le point $A(1;2)$ appartient à la drite $d$.
Donc $2-6+c=0\ssi c=4$
Ainsi une équation de la droite $d$ est $2x-3y+4=0$, soit $3y=2x+4$ ou encore $y=\dfrac{2}{3}x+\dfrac{4}{3}$.

Réponse d

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

On considère la fonction $f$ définie sur $[0;+\infty[$ par $f(x)=\dfrac{x^2}{x+1}$.
On note $C$ sa courbe représentative sur $[0; +\infty[$.
Le coefficient directeur de la tangente à $C$ au point d’abscisse $1$ est :

a. $\dfrac{1}{2}\phantom{\dfrac{1}{2_2}}$
b. $\dfrac{3}{4}\phantom{\dfrac{1^1}{2_2}}$
c. $\dfrac{3}{2}\phantom{\dfrac{1^1}{2_2}}$
d. $2$

$\quad$

Correction Question 4

La fonction $f$ est dérivable sur $[0;+\infty[$ en tant que quotient de fonctions dérivables dont le dénominateur ne s’annule pas sur $[0;+\infty[$.
Pour tout réel $x\pg 0$ on a :
$\begin{align*} f'(x)&=\dfrac{2x\times (x+1)-x^2\times 1}{(x+1)^2} \\
&=\dfrac{2x^2+2x-x^2}{(x+1)^2}\\
&=\dfrac{x^2+2x}{(x+1)^2}\end{align*}$
Ainsi $f'(1)=\dfrac{3}{4}$
Le coefficient directeur de la tangente à $C$ au point d’abscisse $1$ est $\dfrac{3}{4}$

Réponse b

$\quad$

[collapse]

$\quad$

Question 5

L’ensemble des points $M(x; y)$ dont les coordonnées vérifient l’équation $x^2-2x+y^2+4y=4$ est :

a. une droite
b. le cercle de centre $A(1;-2)$ et de rayon $3$
c. le cercle de centre $B(-1;2)$ et de rayon $9$
d. l’ensemble vide

$\quad$

Correction Question 5

$\begin{align*} &x^2-2x+y^2+4y=4 \\
\ssi~& x^2-2x+1-1+y^2+2\times 2y+4-4=4 \\
\ssi~& (x-1)^2+(y+2)^2=9\\
\ssi~& (x-1)^2+\left(y-(-2)\right)^2=3^2\end{align*}$

Réponse b

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Aucune justification n’est demandée.
Une bonne réponse rapporte un point. Une mauvaise réponse, une réponse multiple ou l’absence de réponse ne rapporte ni n’enlève aucun point.
Indiquer sur la copie le numéro de la question et la réponse correspondante.

Question 1

Dans le plan rapporté à un repère orthonormé, on considère la droite $D$ d’équation cartésienne $4x+5y-7=0$.
Un vecteur normal à $D$ a pour coordonnées :

a. $(5 ; 4)$
b. $(-5 ; 4)$
c. $(4 ; 5)$
d. $(4 ; -5)$

$\quad$

Correction Question 1

Un vecteur normal à la droite $D$ d’équation $4x+5y-7=0$ est $\vec{u}(4;5)$.

Réponse c

$\quad$

[collapse]

$\quad$

Question 2

Dans le plan rapporté à un repère orthonormé, l’ensemble $E$ des points $M$ de coordonnées $(x;y)$ vérifiant : $x^2-2x+y^2=3$ est un cercle :

a. de centre $A(1 ; 0)$ et de rayon $2$.
b. de centre $A(1 ; 0)$ et de rayon $4$.
c. de centre $A(-1 ; 0)$ et de rayon $2$.
d. de centre $A(-1 ; 0)$ et de rayon $4$.

$\quad$

Correction Question 2

On a :
$\begin{align*} x^2-2x+y^2=3&\ssi x^2-2x+1-1+y^2=3 \\
&\ssi (x-1)^2+(y-0)^2=4 \\
&\ssi (x-1)^2+(y-0)^2=2^2 \end{align*}$
Il s’agit donc du cercle de centre $A(1;0)$ et de rayon $2$.

Réponse a

$\quad$

[collapse]

$\quad$

Question 3

La somme $15 + 16 + 17 + \ldots + 243$ est égale à :

a. $29~403$
b. $29~412$
c. $29~541$
d. $29~646$

$\quad$

Correction Question 3

On note $\left(u_n\right)$ la suite arithmétique de premier terme $u_0=15$ et de raison $1$.
On a ainsi $u_n=15+n$ pour tout entier naturel $n$.
$15+n=243 \ssi n=228$
Ainsi :
$\begin{align*} S&=15 + 16 + 17 + \ldots + 243\\
&=15+(15+1)+(15+2)+\ldots+(15+228)\\
&=15\times 229+(1+2+\ldots+228)\\
&=3~435+\dfrac{228\times 229}{2}\\
&=29~541\end{align*}$

Réponse c

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

On considère la fonction $f$ dérivable définie sur $\R$ par $f(x)=(x+1)\e^x$.
La fonction dérivée $f’$ de $f$ est définie sur $\R$ par :

a. $f'(x)=(x+2)\e^x$
b. $f'(x)=(x+1)\e^x$
c. $f'(x)=x\e^x$
d. $f'(x)=\e^x$

$\quad$

Correction Question 4

Pour tout réel $x$ on a :
$\begin{align*} f'(x)&=1\times \e^x+(x+1)\times \e^x\\
&=(1+x+1)\e^x\\
&=(x+2)\e^x\end{align*}$

Réponse a

$\quad$

[collapse]

$\quad$

Question 5

En utilisant l’arbre de probabilité pondéré ci-dessous, on obtient :

a. $P(B)=\dfrac{1}{4}$
b. $P(B)=\dfrac{2}{5}$
c. $P(B)=\dfrac{13}{20}$
d. $P(B)=\dfrac{3}{10}$

$\quad$

Correction Question 5

$A$ et $\conj{A}$ forment un système complet d’événements fini.
D’après la formule des probabilités totales on a :
$\begin{align*} P(B)&=P(A\cap B)+P\left(\conj{A}\cap B\right) \\
&=\dfrac{1}{3}\times \dfrac{2}{5}+\dfrac{2}{3}\times \dfrac{1}{4} \\
&=\dfrac{3}{10}\end{align*}$

Réponse d

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Cet exercice est un questionnaire à choix multiples. Pour chaque question une seule réponse est exacte. Une mauvaise réponse ou une absence de réponse n’enlève aucun point. La bonne réponse rapporte un point. Il n’est pas demandé de justification.

Question 1

L’ensemble des solutions de l’inéquation $3x^2-4x+1\pg 0$ est :

a. $]-\infty;-1[\cup\left[-\dfrac{1}{3};+\infty\right[$
b. $\left]-\infty;\dfrac{1}{3}\right]\cup[1;+\infty[$
c. $\left]-\infty;-\dfrac{1}{3}\right]\cup[1;+\infty[$
d. $\left[\dfrac{1}{3};1\right]$

$\quad$

Correction Question 1

Le discriminant du polynôme du second degré est :
$\begin{align*} \Delta&=(-4)^2-4\times 3\times 1 \\
&=4\\
&>0\end{align*}$
Le polynôme possède donc deux racines réelles :
$\begin{align*} x_1&=\dfrac{4-\sqrt{4}}{6} \\
&=\dfrac{1}{3}\end{align*}$ $\quad$ et $\quad$ $\begin{align*} x_2&=\dfrac{4+\sqrt{4}}{6} \\
&=1\end{align*}$
Le coefficient principal est $a=3>0$ donc L’ensemble des solutions de l’inéquation $3x^2-4x+1\pg 0$ est $\left]-\infty;\dfrac{1}{3}\right]\cup[1;+\infty[$

Réponse b

$\quad$

[collapse]

$\quad$

Question 2

Dans le plan muni d’un repère orthonormé, on considère les vecteurs $\vec{u}\begin{pmatrix}a+2\\-1\end{pmatrix}$ et $\vec{v}\begin{pmatrix}3\\a\end{pmatrix}$, où $a$ est un nombre réel. Les vecteurs $\vec{u}$ et $\vec{v}$ sont orthogonaux si, et seulement si :

a. $a(a+2)-3=0$
b. $a(a+2)+3=0$
c. $3(a+2)-a=0$
d. $3(a+2)+a=0$

$\quad$

Correction Question 2

$\vec{u}$ et $\vec{v}$ sont orthogonaux
$\ssi 3(a+2)+(-1)\times a=0$
$\ssi 3(a+2)-a=0$

Réponse a

$\quad$

[collapse]

$\quad$

Question 3

Dans le plan muni d’un repère orthonormé, on considère le point $A (-2; 3)$ et le vecteur $\vec{u}(1; 2)$. Une équation cartésienne de la droite $d$ passant par le point $A$ et de vecteur normal $\vec{u}$ est :

a. $-2x+y-7=0$
b. $x+2y-4=0$
c. $x-2y+8=0$
d. $2x+y+1=0$

$\quad$

Correction Question 3

$\vec{u}(1; 2)$ est un vecteur normal à la droite $d$.
Une équation cartésienne de cette droite est donc de la forme $x+2y+c=0$
Le point $A(-2;3)$ appartient à cette droite. Donc $-2+6+c=0\ssi c=-4$
Une équation cartésienne de $d$ est donc $x+2y-4=0$.

Réponse b

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

On considère la suite $\left(u_n\right)$, géométrique de raison $2$ et de premier terme $u_0 = 3$.
La somme $u_0 + u_1 + \ldots + u_{10}$ est égale à :

a. $3\left(2^{11}-1\right)$
b. $3\left(1-2^{11}\right)$
c. $3\left(2^{10}-1\right)$
d. $3\left(1-2^{10}\right)$

$\quad$

Correction Question 4

On a :
$\begin{align*} S&=u_0 + u_1 + \ldots + u_{10} \\
&=3\times \dfrac{1-2^{11}}{1-2} \\
&=-3\left(1-2^{11}\right)\\
&=3\left(2^{11}-1\right)\end{align*}$

Réponse a

$\quad$

[collapse]

$\quad$

Question 5

Soit $f$ la fonction définie et dérivable sur $]1;+\infty[$ par $f(x)=\dfrac{2x+1}{x-1}$.
La fonction dérivée de $f$ sur $]1;+\infty[$ a pour expression :

a. $f'(x)=\dfrac{-1}{(x-1)^2}$
b. $f'(x)=\dfrac{-3}{(x-1)^2}$
c. $f'(x)=\dfrac{4x-1}{(x-1)^2}$
d. $f'(x)=\dfrac{1}{(x-1)^2}$

$\quad$

Correction Question 5

Pour tout réel $x>1$ on a :
$\begin{align*} f'(x)&=\dfrac{2\times (x-1)-1\times (2x+1)}{(x-1)^2} \\
&=\dfrac{2x-2-2x-1}{(x-1)^2} \\
&=\dfrac{-3}{(x-1)^2}\end{align*}$

Réponse b

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Cet exercice est un questionnaire à choix multiple (QCM). Pour chacune des questions, une seule des réponses proposées est exacte. Indiquer sur la copie le numéro de la question ainsi que la réponse choisie. Aucune justification n’est attendue.

Une réponse juste rapporte un point, une réponse fausse ou l’absence de réponse n’enlèvent pas de point.

Question 1

Dans un repère du plan, la droite $(d)$ a pour équation : $2x-3y+1=0$.
Un vecteur directeur de la droite $(d)$ est :

a. $\vec{u}(2;-3)$
b. $\vec{v}(3;2)$
c. $\vec{w}(-3;1)$
a. $\vec{r}\left(1;\dfrac{3}{2}\right)$

$\quad$

Correction Question 1

Un vecteur directeur d’une droite dont une équation est $ax+by+c=0$ a pour coordonnées $(-b;a)$.
Donc, ici, un vecteur directeur est $\vec{v}(3;2)$.

Réponse b

$\quad$

[collapse]

$\quad$

Question 2

Dans un repère du plan, la droite $(d)$ a pour équation : $2x-3y+1=0$.
Un vecteur normal à la droite $(d)$ est :

a. $\vec{u}(2;-3)$
b. $\vec{v}(3;2)$
c. $\vec{w}(-3;1)$
a. $\vec{r}\left(1;\dfrac{3}{2}\right)$

$\quad$

Correction Question 2

Un vecteur normal à une droite dont une équation est $ax+by+c=0$ a pour coordonnées $(a;b)$.

Donc, ici, un vecteur normal est $\vec{u}(2;-3)$.

Réponse a

$\quad$

[collapse]

$\quad$

Question 3

On donne trois points distincts : $A$, $B$ et $C$.
Les points $D$ et $E$ sont tels que $\vect{EB}=\vect{BA}$ et $\vect{ED}=2\times \vect{BC}$. On a :

a. $A$ est le milieu de $[EB]$
b. $B$ est le milieu de $[ED]$
c. $C$ est le milieu de $[AD]$
d. $D$ est le milieu de $[AC]$

$\quad$

Correction Question 3

Il est préférable de faire un schéma pour se rendre compte de ce qu’il faut prouver.
$\begin{align*} \vect{AD}&=\vect{AB}+\vect{BE}+\vect{ED} \\
&=\vect{AB}+\vect{AB}+2\vect{BC} \\
&=2\left(\vect{AB}+\vect{BC}\right) \\
&=2\vect{AC}\end{align*}$
Par conséquent $C$ est le milieu de $[AD]$.

Réponse c

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

Soit $x$ un nombre réel. Dans un repère orthonormé, les vecteurs $\vec{u}(-x+4;7)$ et $\vec{v} (9; 2x- 5)$ sont orthogonaux lorsque $x$ est égal à :

a. $\dfrac{1}{5}$
b. $10$
c. $-\dfrac{1}{5}$
d. $6$

$\quad$

Correction Question 4

$\phantom{\ssi} \vec{u}(-x+4;7)$ et $\vec{v} (9; 2x- 5)$ sont orthogonaux
$\ssi \vec{u}.\vec{v}=0$
$\ssi 9(-x+4)+7(2x-5)=0$
$\ssi -9x+36+14x-35=0$
$\ssi 5x=-1$
$\ssi x=-\dfrac{1}{5}$

Réponse c

$\quad$

[collapse]

$\quad$

Question 5

Dans un repère orthonormé, on considère les points $A(-1; -2)$, $B(2; 0)$, $C(3; -1)$ et $D(-3; 4)$. Alors $\vect{AC}.\vect{BD}$ est égal à :

a. $-16$
b. $11$
c. $21$
d. $-24$

$\quad$

Correction Question 5

On a $\vect{AC}(4;1)$ et $\vect{BD}(-5;4)$
Ainsi :
$\begin{align*} \vect{AC}.\vect{BD}&= 4\times (-5)+1\times 4 \\
&=-16\end{align*}$

Réponse a

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

 

E3C2 – Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Aucune justification n’est demandée.
Une bonne réponse rapporte un point. Une mauvaise réponse, une réponse multiple ou l’absence de réponse ne rapporte ni n’enlève aucun point.
Indiquer sur la copie le numéro de la question et la réponse correspondante.

Question 1

Soit la fonction $P$ définie sur $\R$ par $P(x)=\left(x^2+x+1\right)(x-1)$.
L’équation $P(x)=0$ :

a. n’a pas de solution sur $\R$
b. a une unique solution sur $\R$
c. a exactement deux solutions sur $\R$
d. a exactement trois solutions sur $\R$

$\quad$

Correction Question 1

Un produit de facteurs est nul si, et seulement si, un de ses facteurs au moins est nul.
Donc $P(x)=0 \ssi x^2+x+1=0$ ou $x-1=0$

$x-1=0 \ssi x=1$
Le discriminant de $x^2+x+1$ est :
$\begin{align*}
\Delta&=1^2-4\times 1\times 1\\
&=-3\\
&<0\end{align*}$
Ce polynôme ne possède donc pas de racine.

Réponse b

$\quad$

[collapse]

$\quad$

Question 2

Soit $f$ la fonction $f$ définie sur $\R$ par $f(x)=(7x-23)\left(\e^x+1\right)$.
L’équation $f(x)=0$ :

a. admet $x=1$ comme solution
b. admet deux solutions sur $\R$
c. admet $x=\dfrac{23}{7}$ comme solution
d. admet $x=0$ comme solution

$\quad$

Correction Question 2

Un produit de facteurs est nul si, et seulement si, un de ses facteurs au moins est nul.

Donc $f(x)=0 \ssi 7x-23=0$ ou $\e^x+1=0$
$7x-23=0 \ssi 7x=23\ssi x=\dfrac{23}{7}$
La fonction exponentielle est strictement positive donc $\e^x+1>1$.

Réponse c

$\quad$

[collapse]

$\quad$

Question 3

Dans le plan rapporté à un repère orthonormé, le cercle de centre $A(-4;2)$ et de rayon $r=\sqrt{2}$ a pour équation :

a. $(x+4)^2+(y-2)^2=\sqrt{2}$
b. $(x-4)^2+(y-2)^2=4$
c. $(x+4)^2+(y-2)^2=2$
d. $(x-4)^2+(y+2)^2=2$

$\quad$

Correction Question 3

Une équation de ce cercle est $\left(x-(-4)\right)^2+(y-2)^2=\sqrt{2}^2$ soit $(x+4)^2+(y-2)^2=2$.

Réponse c

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

Dans le plan rapporté à un repère orthonormé, on considère les vecteurs $\vec{u}(m+1;-1)$ et $\vec{v}(m ; 2)$ où $m$ est un réel.
Une valeur de $m$ pour laquelle les vecteurs $\vec{u}$ et $\vec{v}$ sont orthogonaux est :

a. $m=-\dfrac{2}{3}$
b. $m=-2$
c. $m=2$
d. $m=-1$

$\quad$

Correction Question 4

$\vec{u}$ et $\vec{v}$ sont orthogonaux
$\ssi \vec{u}.\vec{v}=0$
$\ssi (m+1)m-2=0$
$\ssi m^2+m-2=0$

Le discriminant du polynôme du second degré $x^2+x-2$ est :
$\begin{align*} \Delta&=1^2-4\times 1\times (-2)\\
&=9\\
&>0\end{align*}$

Les racines de ce polynômes sont donc :
$\begin{align*} x_1&=\dfrac{-1-\sqrt{9}}{2}\\
&=-2\end{align*}$ $\quad$ et $\quad$ $\begin{align*} x_2&=\dfrac{-1+\sqrt{9}}{2}\\
&=1\end{align*}$

Réponse b

$\quad$

[collapse]

$\quad$

Question 5

Dans le plan rapporté à un repère orthonormé, une équation cartésienne de la droite $D$ passant par le point $A(-2 ; 5)$ et admettant pour vecteur normal $\vec{v}(-1 ; 3)$ est :

a. $-x+3y+7=0$
b. $x-3y+17=0$
c. $-3x-y-1=0$
d. $-x-3y+13=0$

$\quad$

Correction Question 5

Une équation cartésienne de la droite $D$ est de la forme $-x+3y+c=0$.
Le point $A(-2;5)$ appartient à $D$ donc $2+15+c=0 \ssi c=-17$
Une équation cartésienne de $D$ est donc $-x+3y-17=0$.
En multipliant les deux membres de cette équation par $-1$ on obtient $x-3y+17=0$.

Réponse b

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence