E3C – Séries technologiques – Fonctions – Janvier 2020

E3C – Fonctions

Séries technologiques

Une entreprise fabrique ? tonnes d’un certain produit, avec $x\in ∈ [0 ; 20]$. Le coût total de production de $x$ tonnes de produit, exprimé en milliers d’euros, est donné par : $$C(x)=x^3-30x^2+300x$$

  1. On suppose que toute la production est vendue. La recette totale, exprimée en milliers d’euros, est donnée par la fonction $r$ définie sur $[0 ; 20]$ par : $r(x) = 108x$. La fonction associée au bénéfice exprimé en milliers d’euros est donnée par la fonction $B$ définie pour tout $x$ de $[0 ; 20]$ par $B(x) = r(x)-C(x)$.
    Vérifier que pour tout réel $x$ appartenant à $[0 ; 20]$, on a : $B(x) = -x^3+30x^2-192x$.
    $\quad$
  2. Montrer que pour tout $x$ de $[0 ; 20]$, la fonction dérivée associée au bénéfice $B$ admet comme expression $B'(x)=3(4-x)(x-16)$.
    $\quad$
  3. Dresser le tableau de variations sur $[0 ; 20]$, de la fonction $B$.
    $\quad$
  4. En déduire la quantité que l’entreprise doit fabriquer et vendre pour obtenir un bénéfice maximal. Donner la valeur en milliers d‘euros de ce bénéfice.
    $\quad$
  5. Le directeur commercial de cette entreprise souhaite déterminer les quantités à produire et à vendre pour obtenir un bénéfice strictement positif. Il affirme que si l’entreprise fabrique et vend entre $8$ et $20$ tonnes de produit, alors son objectif est atteint, à savoir le bénéfice est strictement positif. Le chef de production quant à lui affirme qu’il faudrait fabriquer et vendre entre $10$ et $20$ tonnes pour atteindre l’objectif.
    Pour chacune des deux affirmations, dire si elle est vraie ou fausse en justifiant la réponse.
    $\quad$

$\quad$

Correction Exercice

  1. Pour tout réel $x\in[0;20]$ on a :
    $\begin{align*} B(x)&=R(x)-C(x) \\
    &=108x-\left(x^3-30x^2+300x\right)\\
    &=108x-x^3+30x^2-300x\\
    &=-x^3+30x^2-192x\end{align*}$
    $\quad$
  2. La fonction $B$ est dérivable sur $[0;20]$ en tant que fonction polynôme.
    Pour tout $x\in[0;20]$ on a d’une part :
    $\begin{align*} B'(x)&=-3x^2+30\times 2x-192\\
    &=-3x^2+60x-192\end{align*}$
    D’autre part :
    $\begin{align*} 3(4-x)(x-16)&=3\left(4x-64-x^2+16x\right) \\
    &=12x-192-3x^2+48x\\
    &=-3x^2+60x-192\end{align*}$
    Ainsi $B'(x)=3(4-x)(x-16)$.
    $\quad$
  3. $4-x=0 \ssi x=4$ et $4-x>0 \ssi x<4$
    $x-16=0 \ssi x=16$ et $x-16>0 \ssi x>16$
    On obtient donc le tableau de variations suivant :

    $\quad$
  4. D’après le tableau de variations précédent, le bénéfice est maximal quand l’entreprise produit et vend $16$ tonnes de produit. Le bénéfice maximal est alors égal à $512~000$ euros.
    $\quad$
  5. On a $B(8)=-128<0$ l’affirmation du directeur commercial est donc fausse.
    On a $B(10)=80$. Sur l’intervalle $[4;16]$ la fonction $B$ est strictement croissante. Donc sur $[10;80]$ on a bien $B(x)>0$.
    De plus sur $[16;20]$ on a $B(x)\pg 160$.
    L’affirmation du chef de production est donc vraie.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C2 – Spécialité maths – Fonctions – 2020

Fonctions

E3C2 – 1ère

Une entreprise produit entre $1$ millier et $5$ milliers de pièces par jour. Le coût moyen de production d’une pièce, en milliers d’euros, pour $x$ milliers de pièces produites, est donné
par la fonction $f$ définie pour tout réel $x\in[1 ; 5]$ par : $$f(x)=\dfrac{0,5x^3-3x^2+x+16}{x}$$

  1. Calculer le coût moyen de production d’une pièce lorsque l’entreprise produit $2$ milliers de pièces.
    $\quad$
  2. On admet que de $f$ est dérivable sur $[1 ; 5]$ et on note $f’$ sa fonction dérivée.
    Montrer que pour tout réel $x\in [1; 5]$, $$f'(x)=\dfrac{x^3-3x^2-16}{x^2}$$
    $\quad$
  3. Vérifier que, pour tout réel $x$, $$x^3-3x^2-16=(x-4)\left(x^2+x+4\right)$$
    $\quad$
  4. En déduire le tableau de variation de $f$ sur $[1 ; 5]$.
    $\quad$
  5. Déterminer le nombre de pièces à fabriquer pour que le coût moyen de production d’une pièce soit minimal, ainsi que la valeur de ce coût minimal.
    $\quad$

$\quad$

Correction Exercice

  1. On a :
    $\begin{align*} f(2)&=\dfrac{0,5\times 2^3-3\times 2^2+2+1}{2}\\
    &=5\end{align*}$
    Lorsque l’entreprise produit $2$ milliers de pièce le coût moyen de production d’une pièce est de $5~000$ euros.
    $\quad$
  2. Pour tout réel $x \in [1;5]$ on a :
    $\begin{align*} f'(x)&=\dfrac{\left(0,5\times 3x^2-6x+1\right)x-\left(0,5x^3-3x^2+x+16\right)\times 1}{x^2}\\
    &=\dfrac{1,5x^3-6x^2+x-0,5x^3+3x^2-x-16}{x^2}\\
    &=\dfrac{x^3-3x^2-16}{x^2}\end{align*}$
    $\quad$
  3. Pour tout réel $x$ on a :
    $\begin{align*}&(x-4)\left(x^2+x+4\right)\\
    =~&x^3+x^2+4x-4x^2-4x-16\\
    =~&x^3-3x^2-16\end{align*}$
    $\quad$
  4. Ainsi pour tout réel $x\in[1;5]$ on a $f'(x)=\dfrac{(x-4)\left(x^2+x+4\right)}{x^2}$
    Le signe de $f'(x)$ ne dépend donc que de celui de $(x-4)\left(x^2+x+4\right)$
    $x-4=0\ssi x=4$ et $x-4>0 \ssi x>4$
    Le discriminant de $x^2+x+4$ est :
    $\begin{align*} \Delta&=1^2-4\times 1\times 4\\
    &=-15\\
    &<0\end{align*}$
    Le coefficient principal est $a=1>0$.
    Par conséquent $x^2+x+4>0$.
    On obtient donc le tableau de variations suivant :

    $\quad$
  5. D’après le tableau de variations la fonction $f$ atteint son minimum pour $x=4$ et $f(4)=1$
    Le coût de production d’une pièce est minimal quand elle fabrique $4~000$ pièces. Ce coût est alors de $1~000$ €.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – Fonctions – 2020

Fonctions

E3C2 – 1ère

On considère la fonction $P$ définie sur l’intervalle $[0 ; 5]$ par $P(t)=100t\e^{-t}$.

  1. Calculer $P(0)$ et $P(5)$ (on arrondira à l’unité).
    $\quad$
  2. À l’aide d’un logiciel de calcul formel, on a obtenu une expression de la dérivée de la fonction $P$ : pour tout réel $t$ de l’intervalle $[0 ; 5]$, $P'(t)=100(1-t)\e^{-t}$.
    a. Utiliser cette expression pour étudier le signe de $P'(t)$ sur l’intervalle $[0 ; 5]$.
    $\quad$
    b. En déduire le tableau de variations de la fonction $P$ sur l’intervalle $[0 ; 5]$.
    $\quad$
    c. Pour quelle valeur de $t$ la fonction $P$ admet-elle un maximum ? Quelle est la valeur de ce maximum ? (on arrondira à l’unité).
    $\quad$
  3. Une station pompe l’eau d’une rivière pour la transformer ensuite en eau potable. Lors d’un épisode de pollution, il faut interrompre le pompage en attendant que la vague de pollution soit évacuée par le courant. On étudie ici un épisode de pollution ayant duré $5$ heures environ.
    La concentration en polluant, exprimée en milligrammes par litre (mg/L) est modélisée par la fonction $P$ définie précédemment, où $t$ est le temps écoulé depuis le début de l’alerte, exprimé en heures.
    On donne ci-dessous la représentation graphique de la fonction $P$ dans le plan muni d’un repère orthogonal.

    Les normes en vigueur indiquent que ce polluant devient dangereux pour la santé si sa concentration dépasse $5$ mg/L.
    Lors d’un épisode déclaré de pollution dans la rivière et après arrêt du pompage, à partir de combien d’heures peut-on considérer que la pollution ne représente plus de danger pour la santé?
    $\quad$

$\quad$

Correction Exercice

  1. On a $P(0)=0$ et $P(5)=500\e^{-5}\approx 3$.
    $\quad$
  2. a. La fonction exponentielle est strictement positive sur $\R$.
    Le signe de $P'(t)$ ne dépend donc que de celui de $1-t$.
    $1-t=0\ssi t=1$ et $1-t>0 \ssi t<1$.
    Ainsi :
    $\bullet$ $P'(t)>0$ sur $[0;1[$;
    $\bullet$ $P'(1)=0$;
    $\bullet$ $P'(t)<0$ sur $]1;5]$.
    $\quad$
    b. On obtient le tableaux de variations suivant :

    $\quad$
    c. D’après le tableau de variations, la fonction $P$ atteint son maximum en $1$. Ce maximum vaut $100\e^{-1}\approx 37$.
    $\quad$
  3. On constate graphiquement que $P(x)<5$ à partir d’environ $4,5$.
    On peut donc considérer que la pollution ne représente plus de danger pour la santé au bout de $4$h $30$ min.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – Fonctions – 2020

Fonctions

E3C2 – 1ère

On modélise la valeur de vente (en milliers d’euros) d’une voiture électrique en fonction du nombre $x$ d’années à partir de sa mise sur le marché par la fonction $f$ définie sur l’intervalle
$[0 ; 10]$ par $$f(x)=35\e^{-0,22x}$$

  1. Calculer $f(0)$. Quel est le prix de vente de cette voiture au moment de la mise sur le marché ?
    $\quad$
  2. Donner une valeur approchée du prix de vente au bout de $5$ ans et $6$ mois.
    $\quad$
  3. On admet que la fonction $f$ est dérivable et on note $f’$ sa fonction dérivée. Montrer que pour tout $x$ appartenant à $[0 ; 10]$, $$f'(x)=-7,7\e^{-0,22x}$$
    $\quad$
  4. Dresser le tableau de variation de la fonction $f$.
    $\quad$
  5. Un client souhaite revendre sa voiture dès que celle-ci aura un prix de vente inférieur à $10~000$ euros. Après combien de mois après avoir acheté sa voiture pourra-t-il la revendre ?
    $\quad$

$\quad$

Correction Exercice

  1. $f(0)=35\e^0=35$.
    Au moment de la mise sur le marché le prix de la voiture est de $35~000$ euros.
    $\quad$
  2. On a $f(5,5)=35\e^{-1,21}\approx 10,437$.
    Le prix de vente au bout de $5$ ans et $6$ mois serait d’environ $10~437$ euros.
    $\quad$
  3. Pour tout réel $x$ appartenant à l’intervalle $[0;10]$ on a :
    $\begin{align*} f'(x)&=35\times (-0,22)\e^{-0,22x}\\
    &=-7,7\e^{-0,22x}\end{align*}$
    $\quad$
  4. La fonction exponentielle est strictement positive sur $\R$.
    Par conséquent $f'(x)<0$ sur l’intervalle $[0;10]$.
    On obtient alors le tableau de variations suivant :

    $\quad$
  5. On a $f(5,6)\approx 10,21$ et $f(5,7)\approx 9,99$.
    Or $5,7$ ans $=5$ ans et $8,4$ mois.
    C’est donc à partir de $5$ ans et $9$ mois qu’il pourra revendre sa voiture.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – Fonctions – 2020

Fonctions

E3C2 – 1ère

Une entreprise vend des smartphones d’un seul modèle « haut de gamme ».
Le service marketing modélise le nombre de smartphones modèle « haut de gamme » vendus par trimestre en fonction du prix de vente $x$ par la fonction $N$ définie par $N(x)=100\e^{-2x}$ où :

  • $x$ est le prix de vente en milliers d’euros d’un smartphone modèle « haut de gamme ». Le prix du smartphone modèle « haut de gamme » est compris entre $400$€ et $2~000$€ ; on a donc $x\in [0,4 ; 2]$.
  • $N(x)$ est le nombre de smartphones modèle « haut de gamme » vendus trimestriellement en millions d’unités.
  1. Si le service commercial fixe le prix de vente de ce smartphone modèle « haut de gamme » à $1~000$ €, quel sera le nombre de smartphones vendus trimestriellement ?
    On arrondira le résultat à mille unités.
    $\quad$

La recette trimestrielle $R(x)$ est obtenue en multipliant le nombre de smartphones modèle « haut de gamme » vendus par le prix de vente. On obtient $R(x) = x \times N(x)$ en milliards d’euros.
Le coût de production en milliards d’euros en fonction du nombre de smartphones modèle « haut de gamme » fabriqués est modélisé par la fonction $C$ définie par $C(x)= 0,4 \times N(x)$ où $x$ est le prix de vente en milliers d’euros.
Le bénéfice est obtenu en calculant la différence entre la recette et le coût de production.

  1. Vérifier que le bénéfice trimestriel peut être estimé à 8,120 milliards d’euros pour un prix de vente $1~000$ €.
    $\quad$
  2. Montrer que le bénéfice trimestriel s’exprime en milliards d’euros en fonction du prix de vente $x$ en milliers d’euros par : $B(x)=(100x-40)\e^{-2x}$.
    $\quad$
  3. On admet que pour tout réel $x\in [0,4 ; 2]$, $B'(x)=(180-200x)\e^{-2x}$.
    Étudier les variations de la fonction $B$ sur l’intervalle $[0,4 ; 2]$.
    $\quad$
  4. À quel prix faut-il vendre ces smartphones pour assurer un bénéfice maximal ?
    $\quad$

$\quad$

Correction Exercice

  1. On a $N(1)=100\e^{-2} \approx 13,534$
    Si le service commercial fixe le prix de vente de ce smartphone modèle « haut de gamme » à $1~000$ €, l’entreprise vendra environ $13,534$ millions de smartphone par trimestre.
    $\quad$
  2. On a $R(x)=1\times N(1)$ et $C(1)=0,4\times N(1)$
    Le bénéfice est alors
    $\begin{align*} B&=R(1)-C(1) \\
    &=N(1)-0,4N(1)\\
    &=0,6N(1) \\
    &\approx 8,120\end{align*}$
    Le bénéfice trimestriel peut être estimé à 8,120 milliards d’euros pour un prix de vente $1~000$ €.
    $\quad$
  3. Pour  tout réel $x$ appartenant à l’intervalle $[0,4;2]$ on a :
    $\begin{align*} B(x)&=R(x)-C(x)\\
    &=100x\e^{-2x}-40\e^{-2x}\\
    &=(100x-40)\e^{-2x}\end{align*}$
    $\quad$
  4. La fonction exponentielle est strictement positive sur $\R$.
    Le signe de $B'(x)$ ne dépend donc que de celui de $180-200x$.
    Or $180-200x=0 \ssi 200x=180 \ssi x=0,9$
    et $180-200x>0 \ssi -200x>-180 \ssi x<0,9$
    Par conséquent :
    $\bullet$ $B'(x)>0$ sur $[0,4;0,9[$
    $\bullet$ $B(0,9)=0$
    $\bullet$ $B'(x)<0$ sur $]0,9;2]$
    La fonction $B$ est donc strictement croissante sur l’intervalle $[0,4;0,9]$ et strictement décroissante sur l’intervalle $[0,9;2]$.
    $\quad$
  5. La fonction $B$ atteint son maximum pour $x=0,9$.
    Le bénéfice est donc maximal quand les smartphones sont vendus $900$€.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – Fonctions – 2020

Fonctions

E3C2 – 1ère

On modélise la diffusion dans le sang d’un médicament de $1$ gramme par intraveineuse (fonction $f_1$, courbe représentative $\mathcal{C}_1$) ou par voie orale (fonction $f_2$, courbe représentative $\mathcal{C}_2$) pendant une durée de $10$ heures.
Plus précisément :

  • $f_1(t)$ modélise la proportion du médicament dans le sang à l’instant $t$, où $t$ est le temps en heure après injection par intraveineuse ;
  • $f_2(t)$ modélise la proportion du médicament dans le sang à l’instant $t$, où $t$ est le temps en heure après administration par voie orale.

Pour tout réel $t$ de l’intervalle $[0 ; 10]$, on admet que $f_1(t)=\e^{-0,57t}$ et $f_2(t)=1,75t\e^{-t}$.
Les courbes $\mathcal{C}_1$ et $\mathcal{C}_2$ de $f_1$ et $f_2$ sont représentées ci-dessous.

  1. Injection par voie intraveineuse
    a. Déterminer le sens de variation de la fonction $f_1$.
    $\quad$
    b. Résoudre graphiquement $f_1(t) < 0,1$. Interpréter la réponse dans le contexte.
    $\quad$
  2. Administration par voie orale
    On note $f_2’$ la fonction dérivée de la fonction $f$.
    a. Montrer que, pour tout $t$ de $[0 ; 10]$, $f_2′(t)=1,75(1-t)\e^{-t}$
    $\quad$
    b. Construire le tableau de variations de la fonction $f_2$.
    $\quad$
    c. À quel instant $t$ la proportion de médicament dans le sang est-elle la plus élevée ?
    $\quad$

$\quad$

Correction Exercice

  1. a. La fonction $f_1$ est dérivable sur $[0;10]$ en tant que composée de la fonction exponentielle et d’une fonction affine.
    Pour tout réel $x$ de l’intervalle $[0;10]$ on a : $f_1′(t)=-0,57\e^{-0,57t}$
    Ainsi $f'(t)<0$ sur $[0;10]$.
    La fonction $f_1$ est donc strictement décroissante sur $[0;10]$.
    $\quad$
    b. Graphiquement $f_1(t)<0,1$ si $t$ appartient à l’intervalle $]4;10]$ (valeur approchée pour $4$).
    La proportion de médicament est inférieure à $0,1$ à partir de $4$ heures.
    $\quad$
  2. a. La fonction $f_2$ est dérivable sur $[0;10]$ en tant que produit de fonctions dérivables sur cet intervalle.
    Pour tout réel de l’intervalle $[0;10]$ on a :
    $\begin{align*} f_2′(t)&=1,75\e^{-t}+1,75t\times \left(-\e^{-t}\right)\\
    &=1,75(1-t)\e^{-t}\end{align*}$
    $\quad$
    b. La fonction exponentielle est strictement positive sur $\R$.
    Le signe de $f_2′(t)$ ne dépend donc que de celui de $1-t$.
    $1-t=0\ssi t=1$ et $1-t>0\ssi t<1$
    On obtient donc le tableau de variations suivant :

    $\quad$
    c. La proportion de médicament dans le sang est la plus élevée au bout d’une heure.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – Fonctions – 2020

Fonctions

E3C2 – 1ère

Soit $f$ la fonction définie sur $\R$ par $f(x)=\left(x^2-2,5x+1\right)\e^x$
.

  1. On note $f’$ la fonction dérivée de $f$.
    a. Montrer que, pour tout réel $x$, $f'(x)=\left(x^2-0,5x-1,5\right)\e^x$.
    $\quad$
    b. Étudier les variations de $f$ sur $\R$.
    $\quad$
  2. On note $\mathcal{C}_f$ la courbe représentative dans un repère et $\mathcal{T}$ la tangente à $\mathcal{C}_f$ de la fonction $f$ au point $A$ d’abscisse $0$.
    a. Déterminer une équation de la tangente $\mathcal{C}_f$.
    $\quad$
    b. On admet que la tangente $\mathcal{T}$ recoupe la courbe $\mathcal{C}_f$ au point $P$ d’abscisse $a$ strictement positive. A l’aide de votre calculatrice, donner un encadrement de $a$ au dixième près.
    $\quad$

$\quad$

Correction Exercice

  1. a. La fonction $f$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur cet intervalle.
    Pour tout réel $x$ on a :
    $\begin{align*} f'(x)&=(2x-2,5)\e^x+\left(x^2-2,5x+1\right)\e^x\\
    &=\left(2x-2,5+x^2-2,5x+1\right)\e^x\\
    &=\left(x^2-0,5x-1,5\right)\e^x\end{align*}$
    $\quad$
    b. La fonction exponentielle est strictement positive. Le signe de $f'(x)$ ne dépend donc que de celui de $x^2-0,5x-1,5$.
    Il s’agit d’un polynôme du second degré dont le coefficient principal est $a=1>0$.
    Son discriminant est :
    $\begin{align*} \Delta&=(-0,5)^2-4\times 1\times (-1,5)\\
    &=6,25\\
    &>0\end{align*}$
    Il possède deux racines réelles :
    $\begin{align*} x_1&=\dfrac{0,5-\sqrt{6,25}}{2}\\
    &=-1\end{align*}$ $\quad$ et $\quad$ $\begin{align*} x_2&=\dfrac{0,5+\sqrt{6,25}}{2}\\
    &=1,5\end{align*}$
    Ainsi :
    $\bullet$ $f'(x)>0$ sur $]-\infty;-1[\cup]1,5;+\infty[$
    $\bullet$ $f'(-1)=f'(1,5)=0$
    $\bullet$ $f'(x)<0$ sur $]-1;1,5[$
    La fonction $f$ est donc strictement croissante sur $]-\infty;-1]\cup[1,5;+\infty[$ et strictement décroissante sur $[-1;1,5]$.
    $\quad$
  2. a. Une équation de $\mathcal{T}$ est de la forme $y=f'(0)(x-0)+f(0)$
    $f(0)=1$ et $f'(0)=-1,5$.
    Une équation de la droite $\mathcal{T}$ est donc $y=-1,5x+1$.
    $\quad$
    b. D’après la calculatrice $a\approx 1,8$.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

 

E3C2 – Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Cet exercice est un QCM et comprend cinq questions. Pour chacune des questions, une seule des quatre réponses proposées est correcte. Les questions sont indépendantes.
Pour chaque question, indiquer le numéro de la question et recopier sur la copie la lettre correspondante à la réponse choisie.
Aucune justification n’est demandée mais il peut être nécessaire d’effectuer des recherches au brouillon pour aider à déterminer votre réponse.
Chaque réponse correcte rapporte un point. Une réponse incorrecte ou une question sans réponse n’apporte ni ne retire de point.

Question 1

Une équation de la tangente à la courbe représentative de la fonction exponentielle au point d’abscisse $0$ est :

a. $y=x+1$
b. $y=\e x$
c. $y=\e^x$
d. $y=x-1$

$\quad$

Correction Question 1

On appelle $f$ la fonction exponentielle.
Une équation de la tangente est de la forme $y=f'(0)(x-0)+f(0)$
Or $f'(0)=\e^0=1$ et $f(0)=\e^0=1$.
Ainsi une équation de la tangente est $y=x+1$.

Réponse a

$\quad$

[collapse]

$\quad$

Question 2

La fonction $f$ définie sur $\R$ par : $f(x)=\e^{-2x+6}$ admet pour dérivée la fonction $f’$ définie sur $\R$ par :

a. $f'(x)=\e^{-2x+6}$
b. $f'(x)=-2\e^{-2x+6}$
c. $f'(x)=-2x\e^{-2x+6}$
d. $f'(x)=(-2x+6)\e^{-2x+6}$

$\quad$

Correction Question 2

$f(x)$ est de la forme $f(x)=\e^{ax+b}$.
Elle est donc dérivable sur $\R$ et $f'(x)$ est de la forme $a\e^{ax+b}$.
Ainsi, pour tout réel $x$ on a $f'(x)-2\e^{-2x+6}$.

Réponse b

$\quad$

[collapse]

$\quad$

Question 3

Dans le repère orthonormé $\Oij$, le vecteur $\vect{AB}$ représenté ci-dessous est égal à :

a. $-2\vec{i}+6\vec{j}$
b. $-6\vec{i}+2\vec{j}$
c. $2\vec{i}-6\vec{j}$
d. $6\vec{i}-2\vec{j}$

$\quad$

Correction Question 3

On lit, graphiquement, que $\vect{AB}\begin{pmatrix}6\\-2\end{pmatrix}$
Par conséquent $\vect{AB}=6\vec{i}-2\vec{j}$.

Réponse d

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

On considère la fonction $f$ définie pour tout réel $x$ par $f(x)=\sin x-\cos x$. Parmi les quatre propositions suivantes, une seule est correcte. Laquelle ?

a. $f$ est une fonction paire.
b. $f$ est une fonction impaire.
c. $f$ n’est ni paire, ni impaire.
d. $f(0)=0$

$\quad$

Correction Question 4

On a $f(0)=-1$

Pour tout réel $x$ on a :
$\begin{align*} f(-x)&=\sin(-x)-\cos(-x)\\
&=-\sin(x)-\cos(x)\end{align*}$
Par conséquent $f(-x)\neq f(x)$ et $f(-x)\neq -f(-x)$.
La fonction $f$ n’est ni paire, ni impaire.

Réponse c

$\quad$

[collapse]

$\quad$

Question 5

Dans le plan muni d’un repère, on considère la droite $(d)$ d’équation : $5x-2y+8=0$.
La droite $(d)$ a pour coefficient directeur :

a. $\vec{u}(2;5)$
b. $\dfrac{5}{2}$
c. $\dfrac{2}{5}$
d. $-2$

$\quad$

Correction Question 5

Un vecteur directeur de la droite $(d)$ est $\vec{u}(2;5)$.
Le coefficient directeur de cette droite est donc $\dfrac{5}{2}$.

Réponse b

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

 

E3C2 – Spécialité maths – Fonctions – 2020

Fonctions

E3C2 – 1ère

Soit la fonction $f$ définie sur $[0;3]$ par $f(x)=4x\e^{-x}$.

  1. On a tracé ci-dessous la courbe représentative de la fonction $f$ dans un repère orthonormé d’origine $0$.

    Conjecturer une valeur approchée du maximum de $f$ sur $[0 ; 3]$.
    $\quad$
  2. La fonction $f$ est dérivable sur $[0 ; 3]$.
    Montrer que pour tout réel $x$ de l’intervalle $[0; 3]$,  $f'(x)=4(1-x)\e^{-x}$.
    $\quad$
  3. En déduire le tableau de signes de $f'(x)$ sur $[0 ; 3]$.
    $\quad$
  4. En déduire le tableau des variations de $f$ sur $[0 ; 3]$ puis la valeur exacte du maximum de $f$ sur $[0 ; 3]$.
    $\quad$
  5. Soit $A$ le point d’abscisse $1$ de $C_f$ et soit $t$ la tangente à $C_f$ au point d’abscisse $0,5$.
    Qui, de la droite $(AO)$ ou de la droite $t$, a le plus grand coefficient directeur ? Justifier.
    $\quad$

$\quad$

Correction Exercice

  1. Il semblerait, graphiquement, que le maximum de $f$ soit environ égal à $1,45$.
    $\quad$
  2. Pour tout réel $x$ de l’intervalle $[0;3]$ on a :
    $\begin{align*} f'(x)&=4\e^{-x}+4x\times (-x)\e^{-x}\\
    &=(4-4x)\e^{-x} \\
    &=4(1-x)\e^{-x}\end{align*}$
    $\quad$
  3. La fonction exponentielle est strictement positive sur $\R$.
    Le signe de $f'(x)$ ne dépend donc que de celui de $1-x$.
    $1-x=0 \ssi x=1$ et $1-x>0 \ssi x<1$
    On obtient donc le tableau de signes et de variations suivant :

    $\quad$
  4. Voir tableau précédent
    Le maximum est $4\e^{-1}$.
    $\quad$
  5. Le coefficient directeur de la $(AO)$ est :
    $\begin{align*} a&=\dfrac{4\e^{-1}-0}{1-0}\\
    &=4\e^{-1}\\
    &\approx 1,47\end{align*}$
    Le coefficient directeur de $t$ est :
    $\begin{align*} f'(0,5)&=2\e^{-0,5}\\
    &\approx 1,21\end{align*}$
    La droite $(AO)$ a donc le plus grand coefficient directeur.
    $\quad$
    Remarque : $f'(0,5)=\dfrac{2}{\sqrt{e}}$ et $a=\dfrac{4}{\e}$ ainsi $a=\left(f'(0,5)\right)^2$.
    Or $\dfrac{2}{\sqrt{e}}>1$ donc $a>f'(0,5)$.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – Fonctions – 2020

Fonctions

E3C2 – 1ère

On considère la fonction $f$ définie sur l’intervalle $[0 ; +\infty[$ par $f(x) = 3x\e^{-0,4x}$
La fonction dérivée de la fonction $f$ est notée $f’$.
On admet que la fonction $f’$ a pour expression $f'(x)=(-1,2x+3)\e^{-0,4x}$.

  1.  Déterminer le signe de $f'(x)$ sur l’intervalle $[0 ; +\infty[$.
    $\quad$
  2. En déduire le tableau de variation de la fonction $f$ sur l’intervalle $[0 ; +\infty[$.
    $\quad$
  3. Un sportif a pris un produit dopant. La fonction $f$ modélise la quantité, en mg/L, de ce produit dopant présent dans le sang du sportif $x$ heures après la prise.
    a. Pourquoi peut-on affirmer que ce produit dopant n’est pas naturellement présent dans l’organisme du sportif ?
    $\quad$
    b. Combien de temps après son absorption, ce produit dopant sera-t-il présent en quantité maximale dans le sang du sportif ?
    $\quad$
    c. Le sportif absorbe ce produit dopant au début d’une séance d’entraînement.
    Le même jour, $6$ heures après le début de cette séance d’entraînement, il est soumis à un contrôle anti-dopage. Celui-ci se révèlera positif si la quantité de produit dopant présent dans l’organisme de ce sportif dépasse $1,4$ mg/L.
    Ce contrôle anti-dopage sera-t-il positif ? Justifier.
    $\quad$

$\quad$

Correction Exercice

  1. La fonction exponentielle est strictement positive sur $\R$. Le signe de $f'(x)$ ne dépend donc que de celui de $-1,2x+3$.
    $-1,2x+3=0 \ssi -1,2x=-3 \ssi x=2,5$
    $-1,2x+3>0 \ssi -1,2x>-3 \ssi x<2,5$
    Ainsi :
    $\bullet$ $f'(x)>0$ sur $[0;2,5[$
    $\bullet$ $f'(2,5)=0$
    $\bullet$ $f'(x)<0$ sur $]2,5;+\infty[$
    $\quad$
  2. On obtient ainsi le tableau de variations suivant :

    $\quad$
  3. a. À l’instant $t=0$, la concentration du produit dopant dans le sang est nulle. Il n’est donc pas naturellement présent dans l’organisme du sportif.
    $\quad$
    b. D’après le tableau de variations, la quantité maximale dans le sang est atteinte $2,5$ heures après sont absorption.
    $\quad$
    c. On a :
    $\begin{align*} f(6)&=18\e^{-2,4} \\
    &\approx 1,63 \\
    &>1,4\end{align*}$
    Ce contrôle anti-dopage sera donc positif.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence