E3C2 – Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Cet exercice est un QCM et comprend cinq questions.
Pour chacune des questions, une seule des quatre réponses proposées est correcte.
Les questions sont indépendantes.
Pour chaque question, indiquer le numéro de la question et recopier sur la copie la lettre correspondant à la réponse choisie.
Aucune justification n’est demandée, mais il peut être nécessaire d’effectuer des recherches au brouillon pour aider à déterminer votre réponse.
Chaque réponse correcte rapporte un point. Une réponse incorrecte ou une question sans réponse n’apporte ni ne retire aucun point.

Question 1

On donne ci-dessous la courbe représentative $C_f$ d’une fonction $f$.


Cette courbe a une tangente $T$ au point $A(-3 ; 3)$.
L’équation réduite de cette tangente est :

a. $y=\dfrac{1}{5}x-3,7$
b. $y=\dfrac{1}{5}x+18$
c. $y=5x+18$
d. $y=5x-3,7$

$\quad$

Correction Question 1

D’après le graphique, l’ordonnée à l’origine de la droite $T$ est $18$.
Cette droite passe par les points de coordonnées $(-3;3)$ et $(0;18)$.
Le coefficient directeur est donc :
$\begin{align*} a&=\dfrac{18-3}{0-(-3)}\\
&=5\end{align*}$

Réponse c

$\quad$

[collapse]

$\quad$

Question 2

On reprend la fonction $f$ de la question précédente. La représentation graphique de sa fonction dérivée est :

$\quad$

Correction Question 2

D’après le graphique, la fonction $f$ est croissante sur les intervalles $]-\infty;-2]$ et $[2;+\infty[$ et décroissante sur l’intervalle $[-2;2]$.
$f'(x)$ est donc positif sur $]-\infty;-2]$ et $[2;+\infty[$ et négatif sur $[-2;2]$.

Réponse b

$\quad$

[collapse]

$\quad$

Question 3

L’expression $\cos(x+\pi)+\sin\left(x+\dfrac{\pi}{2}\right)$ est égale à :

a. $-2\cos(x)$
b. $0$
c. $\cos(x)+\sin(x)$
d. $2\cos(x)$

$\quad$

Correction Question 3

Pour tout réel $x$ on a :
$\begin{align*} \cos(x+\pi)+\sin\left(x+\dfrac{\pi}{2}\right)&=-\cos(x)+\cos(x)\\
&=0\end{align*}$

Réponse b

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

On considère la fonction polynôme du second degré $f$ définie sur $\R$ par $f(x)=-2x^2+4x+6$.
Cette fonction est strictement positive sur l’intervalle :

a. $]-\infty;-1[\cup]3;+\infty[$
b. $]-1;3[$
c. $]-\infty;-3[\cup]1;+\infty[$
d. $]-3;1[$

$\quad$

Correction Question 4

Le discriminant est :
$\begin{align*} \Delta&=4^2-4\times (-2)\times 6\\
&=64\\
&>0\end{align*}$

Les racines sont donc :
$\begin{align*} x_1&=\dfrac{-4-\sqrt{64}}{-4}\\
&=3\end{align*}$ $\quad$ et $\quad$ $\begin{align*} x_2&=\dfrac{-4+\sqrt{64}}{-4}\\
&=-1\end{align*}$

Le coefficient principal est $a=-2<0$.
Par conséquent $f(x)>0$ sur l’intervalle $]-1;3[$.

Réponse b

$\quad$

[collapse]

$\quad$

Question 5

On considère la fonction $h$ définie sur $\R$ par $h(x)=(2x-1)\e^x$.
La fonction dérivée de la fonction $h$ est définie sur $\R$ par :

a. $h'(x)=2\e^x$
b. $h'(x)=(2x+1)\e^x$
c. $h'(x)=(2x-1)\e^x$
d. $h'(x)=-\e^x$

$\quad$

Correction Question 5

La fonction $h $est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.

Pour tout réel $x$ on a :
$\begin{align*} h'(x)&=2\e^x +(2x-1)\e^x \\
&=(2+2x-1)\e^x\\
&=(2x+1)\e^x\end{align*}$

Réponse b

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – Fonctions – 2020

Fonctions

E3C2 – 1ère

Soit $f$ la fonction définie sur $\R$ par $f(x)=\left(x^2-2,5x+1\right)\e^x$
.

  1. On note $f’$ la fonction dérivée de $f$.
    a. Montrer que, pour tout réel $x$, $f'(x)=\left(x^2-0,5x-1,5\right)\e^x$.
    $\quad$
    b. Étudier les variations de $f$ sur $\R$.
    $\quad$
  2. On note $\mathcal{C}_f$ la courbe représentative dans un repère et $\mathcal{T}$ la tangente à $\mathcal{C}_f$ de la fonction $f$ au point $A$ d’abscisse $0$.
    a. Déterminer une équation de la tangente $\mathcal{C}_f$.
    $\quad$
    b. On admet que la tangente $\mathcal{T}$ recoupe la courbe $\mathcal{C}_f$ au point $P$ d’abscisse $a$ strictement positive. A l’aide de votre calculatrice, donner un encadrement de $a$ au dixième près.
    $\quad$

$\quad$

Correction Exercice

  1. a. La fonction $f$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur cet intervalle.
    Pour tout réel $x$ on a :
    $\begin{align*} f'(x)&=(2x-2,5)\e^x+\left(x^2-2,5x+1\right)\e^x\\
    &=\left(2x-2,5+x^2-2,5x+1\right)\e^x\\
    &=\left(x^2-0,5x-1,5\right)\e^x\end{align*}$
    $\quad$
    b. La fonction exponentielle est strictement positive. Le signe de $f'(x)$ ne dépend donc que de celui de $x^2-0,5x-1,5$.
    Il s’agit d’un polynôme du second degré dont le coefficient principal est $a=1>0$.
    Son discriminant est :
    $\begin{align*} \Delta&=(-0,5)^2-4\times 1\times (-1,5)\\
    &=6,25\\
    &>0\end{align*}$
    Il possède deux racines réelles :
    $\begin{align*} x_1&=\dfrac{0,5-\sqrt{6,25}}{2}\\
    &=-1\end{align*}$ $\quad$ et $\quad$ $\begin{align*} x_2&=\dfrac{0,5+\sqrt{6,25}}{2}\\
    &=1,5\end{align*}$
    Ainsi :
    $\bullet$ $f'(x)>0$ sur $]-\infty;-1[\cup]1,5;+\infty[$
    $\bullet$ $f'(-1)=f'(1,5)=0$
    $\bullet$ $f'(x)<0$ sur $]-1;1,5[$
    La fonction $f$ est donc strictement croissante sur $]-\infty;-1]\cup[1,5;+\infty[$ et strictement décroissante sur $[-1;1,5]$.
    $\quad$
  2. a. Une équation de $\mathcal{T}$ est de la forme $y=f'(0)(x-0)+f(0)$
    $f(0)=1$ et $f'(0)=-1,5$.
    Une équation de la droite $\mathcal{T}$ est donc $y=-1,5x+1$.
    $\quad$
    b. D’après la calculatrice $a\approx 1,8$.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

 

E3C2 – Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend 5 questions.
Pour chacune des questions, une seule des quatre réponses proposées est correcte.
Les questions sont indépendantes.
Pour chaque question, indiquer le numéro de la question et recopier sur la copie la lettre correspondante à la réponse choisie.
Aucune justification n’est demandée mais il peut être nécessaire d’effectuer des recherches au brouillon pour aider à déterminer votre réponse.
Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une question sans réponse n’apporte ni ne retire de point.

Question 1

Pour tout réel $x$, $\e^{2x}+\e^{4x}$ est égal à

a. $\e^{6x}$
b. $\e^{2x}\left(1+\e^2\right)$
c. $\e^{3x}\left(\e^x+\e^{-x}\right)$
d. $\e^{8x^2}$

$\quad$

Correction Question 1

Pour tout réel $x$ on a :
$\begin{align*} e^{2x}+\e^{4x}&=\e^{3x}\times \e^{-x}+\e^{3x}\times \e^{x}\\
&=\e^{3x}\left(\e^{-x}+\e^{x}\right)\end{align*}$

Réponse c

$\quad$

[collapse]

$\quad$

Question 2

Dans le plan muni d’un repère $\Oij$, on considère les vecteurs $\vec{u}(-5;2)$ et $\vec{v}(4;10)$ et la droite $(d)$ d’équation : $5x+2y+3=0$.

a. $\vec{u}$ et $\vec{v}$ sont colinéaires
b. $\vec{u}$ est un vecteur normal à la droite $(d)$
c. $\vec{u}$ et $\vec{v}$ sont orthogonaux
d. $\vec{u}$ est un vecteur directeur de $(d)$

$\quad$

Correction Question 2

$\begin{align*} \vec{u}.\vec{v}&=-5\times 4+2\times 10\\
&=0\end{align*}$

Réponse c

$\quad$

[collapse]

Question 3

La dérivée $f’$ de la fonction $f$ définie sur $\R$ par $f(x)=(2x-1)\e^{-x}$ est :

a. $2x\e^{-x}$
b. $-2x\e^{-x}$
c. $(-2x+3)\e^{-x}$
d. $2\e^{-x}+(2x-1)\e^{-x}$

$\quad$

Correction Question 3

La fonction $f$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
Pour tout réel $x$ on a :
$\begin{align*} f'(x)&=2\e^{-x}+(2x-1)\times \left(-\e^{-x}\right)\\
&=(2-2x+1)\e^{-x}\\
&=(3-2x)\e^{-x}\end{align*}$

Réponse c

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

Pour tout réel $x$, on a $\sin(\pi+x)=$

a. $-\sin(x)$
b. $\cos(x)$
c. $\sin(x)$
d. $-\cos(x)$

$\quad$

Correction Question 4

Pour tout réel $x$ $\sin(\pi+x)=-\sin(x)$

Réponse a

$\quad$

[collapse]

$\quad$

Question 5

Soit $f$ une fonction définie et dérivable sur $\R$ dont la courbe représentative est donnée ci-dessous.
La tangente à la courbe au point $A$ est la droite $T$.

a. $f'(0)=3$
b. $f'(0)=\dfrac{1}{5}$
c. $f'(0)=5$
d. $f'(0)=-5$

$\quad$

Correction Question 5

$f'(0)$ est le coefficient directeur de la droite $T$.
Cette droite passe par les points de coordonnées $(0;3)$ et $(1;-2)$.
Donc :
$\begin{align*} f'(0)&=\dfrac{-2-3}{1-0}\\
&=-5\end{align*}$

Réponse d

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – Fonctions – 2020

Fonctions

E3C2 – 1ère

Soit $h$ la fonction définie sur $[0 ; 26]$ par : $h(x)=-x^3+30x^2-108x-490$.

  1. Soit $h’$ la fonction dérivée de $h$. Exprimer $h'(x)$ en fonction de $x$.
    $\quad$
  2. On note $C$ la courbe représentative de $h$ et $C’$ celle de $h’$.
    a. Identifier $C$ et $C’$ sur le graphique orthogonal ci-dessous parmi les trois courbes $C_1$, $C_2$ et $C_3$ proposées.
    $\quad$
    b. Justifier le choix pour $C’$.$\quad$
  3. Soit $(T)$ la tangente à $C$ au point $A$ d’abscisse $0$. Déterminer son équation réduite.
    $\quad$
  4. Étudier le signe de $h'(x)$ puis dresser le tableau de variation de la fonction $h$ sur $[0; 26]$.
    $\quad$

$\quad$

Correction Exercice

  1. La fonction $h$ est dérivable sur $[0;26]$ en tant que fonction polynôme.
    Pour tout réel $x$ appartenant à $[0;26]$ on a :
    $\begin{align*} h'(x)&=-3x^2+30\times 2x-108 \\
    &=-3x^2+60x-108\end{align*}$
    $\quad$
  2. a. et b. On a $h(0)=-490$.
    C’est par conséquent la courbe $C_2$ qui représente la fonction $h$.
    Le coefficient principal de $h'(x)$ est $a=-3<0$. $h’$ est donc représentée par la courbe $C_1$.
    $\quad$
    Remarque : La fonction $h$ est définie sur $[0;26]$ alors que les courbes laissent supposer qu’elles représentent des fonctions définies sur $\R$!
    $\quad$
  3. Une équation de la la droite $(T)$ est de la forme $y=f'(0)(x-0)+f(0)$
    Or $f(0)=-490$ et $f'(0)=-108$
    Une équation de $(T)$ est donc $y=-108x-490$.
    $\quad$
  4. On étudie le signe de $-3x^2+60x-108$.
    C’est un polynôme du second degré donc le coefficient principal est $a=-3$.
    Son discriminant est :
    $\begin{align*} \Delta&=60^2-4\times (-3)\times (-108)\\
    &=2~304\\
    &>0\end{align*}$
    Il possède donc deux racines réelles :
    $\begin{align*} x_1&=\dfrac{-60-\sqrt{2~304}}{-6} \\
    &=18\end{align*}$ $\quad$ et $\quad$ $\begin{align*} x_1&=\dfrac{-60+\sqrt{2~304}}{-6} \\
    &=2\end{align*}$
    On obtient donc le tableau de variations suivant :

    $\quad$
    Remarque : L’énoncé original demander d’étudier la fonction sur l’intervalle $[0;30]$ !
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – Fonctions – 2020

Fonctions

E3C2 – 1ère

On considère la fonction $f$ définie sur $\R$ par $f(x)=x^3+3x^2+3x-63$.
On appelle $\boldsymbol{C}$ sa courbe représentative dans un repère orthonormé.

  1. Déterminer $f'(x)$.
    $\quad$
  2. Etudier le signe de $f'(x)$ sur $\R$.
    $\quad$
  3. Établir le tableau de variations de la fonction $f$ sur $\R$.
    $\quad$
  4. Justifier que la tangente à la courbe $\boldsymbol{C}$ au point d’abscisse $-1$ est la droite $\boldsymbol{D}$ d’équation $y=-64$.
    $\quad$
  5. Déterminer en quels points de la courbe $\boldsymbol{C}$ la tangente à la courbe est parallèle à la droite d’équation $y=3x-100$
    $\quad$

$\quad$

Correction Exercice

  1. La fonction $f$ est dérivables sur $\R$ en tant que fonction polynôme.
    Pour tout réel $x$ on a :
    $\begin{align*} f'(x)&=3x^2+3\times 2x+3\\
    &=3x^2+6x+3\end{align*}$
    $\quad$
  2. $f'(x)=3x^2+6x+3$ est un polynôme du second degré.
    On peut calculer son discriminant.
    Mais on peut aussi remarquer que :
    $\begin{align*} f'(x)&=3\left(x^2+2x+1\right)\\
    &=3(x+1)^2\end{align*}$
    Par conséquent $f'(x)\pg 0$ sur $\R$ et $f'(x)=0 \ssi x=-1$
    $\quad$
  3. On obtient donc le tableau de variations suivant :

    $\quad$
  4. Une équation de la droite $\boldsymbol{D}$ est de la forme $y=f'(-1)\left(x-(-1)\right)+f(1)$
    Or $f'(-1)=0$ et $f(1)=-64$.
    Ainsi une équation de $\boldsymbol{D}$ est $y=-64$.
    $\quad$
  5. Le coefficient directeur de la droite d’équation $y=3x-100$ est $3$.
    On veut donc résoudre l’équation :
    $\begin{align*} f'(x)=3&\ssi 3(x+1)^2=3 \\
    &\ssi (x+1)^2=1\\
    &\ssi x+1=1 \text{  ou  } x+1=-1\\
    &\ssi x=0\text{  ou } x=-2\end{align*}$
    Seules les tangentes à la courbe $\boldsymbol{C}$ au point d’abscisse $0$ et $-2$ sont donc parallèles à la droite d’équation $y=3x-100$.
    $\quad$
    Remarque : On pouvait également résoudre une équation du second degré en utilisant le discriminant.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Cet exercice est un QCM et comprend cinq questions. Pour chacune des questions, une seule des quatre réponses proposées est correcte. Les questions sont indépendantes.
Pour chaque question, indiquer le numéro de la question et recopier sur la copie la lettre correspondante à la réponse choisie.
Aucune justification n’est demandée mais il peut être nécessaire d’effectuer des recherches au brouillon pour aider à déterminer votre réponse.
Chaque réponse correcte rapporte un point. Une réponse incorrecte ou une question sans réponse n’apporte ni ne retire de point.

Question 1

Une équation de la tangente à la courbe représentative de la fonction exponentielle au point d’abscisse $0$ est :

a. $y=x+1$
b. $y=\e x$
c. $y=\e^x$
d. $y=x-1$

$\quad$

Correction Question 1

On appelle $f$ la fonction exponentielle.
Une équation de la tangente est de la forme $y=f'(0)(x-0)+f(0)$
Or $f'(0)=\e^0=1$ et $f(0)=\e^0=1$.
Ainsi une équation de la tangente est $y=x+1$.

Réponse a

$\quad$

[collapse]

$\quad$

Question 2

La fonction $f$ définie sur $\R$ par : $f(x)=\e^{-2x+6}$ admet pour dérivée la fonction $f’$ définie sur $\R$ par :

a. $f'(x)=\e^{-2x+6}$
b. $f'(x)=-2\e^{-2x+6}$
c. $f'(x)=-2x\e^{-2x+6}$
d. $f'(x)=(-2x+6)\e^{-2x+6}$

$\quad$

Correction Question 2

$f(x)$ est de la forme $f(x)=\e^{ax+b}$.
Elle est donc dérivable sur $\R$ et $f'(x)$ est de la forme $a\e^{ax+b}$.
Ainsi, pour tout réel $x$ on a $f'(x)-2\e^{-2x+6}$.

Réponse b

$\quad$

[collapse]

$\quad$

Question 3

Dans le repère orthonormé $\Oij$, le vecteur $\vect{AB}$ représenté ci-dessous est égal à :

a. $-2\vec{i}+6\vec{j}$
b. $-6\vec{i}+2\vec{j}$
c. $2\vec{i}-6\vec{j}$
d. $6\vec{i}-2\vec{j}$

$\quad$

Correction Question 3

On lit, graphiquement, que $\vect{AB}\begin{pmatrix}6\\-2\end{pmatrix}$
Par conséquent $\vect{AB}=6\vec{i}-2\vec{j}$.

Réponse d

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

On considère la fonction $f$ définie pour tout réel $x$ par $f(x)=\sin x-\cos x$. Parmi les quatre propositions suivantes, une seule est correcte. Laquelle ?

a. $f$ est une fonction paire.
b. $f$ est une fonction impaire.
c. $f$ n’est ni paire, ni impaire.
d. $f(0)=0$

$\quad$

Correction Question 4

On a $f(0)=-1$

Pour tout réel $x$ on a :
$\begin{align*} f(-x)&=\sin(-x)-\cos(-x)\\
&=-\sin(x)-\cos(x)\end{align*}$
Par conséquent $f(-x)\neq f(x)$ et $f(-x)\neq -f(-x)$.
La fonction $f$ n’est ni paire, ni impaire.

Réponse c

$\quad$

[collapse]

$\quad$

Question 5

Dans le plan muni d’un repère, on considère la droite $(d)$ d’équation : $5x-2y+8=0$.
La droite $(d)$ a pour coefficient directeur :

a. $\vec{u}(2;5)$
b. $\dfrac{5}{2}$
c. $\dfrac{2}{5}$
d. $-2$

$\quad$

Correction Question 5

Un vecteur directeur de la droite $(d)$ est $\vec{u}(2;5)$.
Le coefficient directeur de cette droite est donc $\dfrac{5}{2}$.

Réponse b

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

 

E3C2 – Spécialité maths – Fonctions – 2020

Fonctions

E3C2 – 1ère

Soit $f$ la fonction définie sur l’intervalle $[0; 10]$ par : $f(x)=60x\e^{-0,5x}$.
La fonction dérivée de la fonction $f$ est notée $f’$.

  1. Démontrer que, pour tout réel $x$, $f'(x)=-30(x-2)\e^{-0,5x}$.
    $\quad$
  2. Déterminer le signe de $f'(x)$ sur l’intervalle $[0 ; 10]$.
    $\quad$
  3. Établir le tableau de variation de la fonction $f$ sur l’intervalle $[0 ; 10]$.
    On indiquera dans ce tableau les valeurs exactes des extremums.
    $\quad$
  4. Quelles sont les coordonnées du point en lequel la tangente à la courbe représentative de la fonction $f$ est parallèle à l’axe des abscisses ?
    $\quad$
  5. Déterminer l’équation réduite de la tangente à la courbe représentative de la fonction $f$ au point d’abscisse $0$.
    $\quad$

$\quad$

Correction Exercice

  1. L fonction $f$ est dérivable sur l’intervalle $[0;10]$ en tant que produit de fonctions dérivables sur cet intervalle.
    Pour tout réel $x\in[0;10]$ on a :
    $\begin{align*} f'(x)&=60\e^{-0,5x}+60x\times \left(-0,5\e^{-0,5x}\right)\\
    &=(60-30x)\e^{-0,5x}\\
    &=-30(x-2)\e^{-0,5x}\end{align*}$
    $\quad$
  2. La fonction exponentielle est strictement positive sur $\R$. Le signe de $f'(x)$ ne dépend donc que de celui de $-30(x-2)$.
    Or $-30(x-2)=0 \ssi x-2=0 \ssi x=2$
    et $-30(x-2)>0\ssi x-2<0 \ssi x<2$
    Par conséquent :
    $\bullet$ $f'(x)>0$ sur $[0;2[$;
    $\bullet$ $f'(2)=0$;
    $\bullet$ $f'(x)<0$ sur $]2;10]$.
    $\quad$
  3. On obtient ainsi le tableau de variations suivant :

    $\quad$
  4. $f'(x)=0 \ssi x=2$
    La tangente à la courbe représentative de la fonction $f$ est parallèle à l’axe des abscisses au point de coordonnées $\left(2;120\e^{-1}\right)$.
    $\quad$
  5. L’équation réduite de cette tangente est de la forme $y=f'(0)(x-0)+f(0)$
    Or $f'(0)=60$ et $f(0)=0$.
    Une équation de cette tangente est donc $y=60x$.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend 5 questions. Pour chacune des questions, une seule des quatre réponses proposées est correcte. Les questions sont indépendantes. Pour chaque question, indiquer le numéro de la question et recopier sur la copie la lettre correspondante à la réponse choisie. Aucune justification n’est demandée, cependant des traces de recherche au brouillon peuvent aider à trouver la bonne réponse. Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une question sans réponse n’apporte ni ne retire de point.

Question 1

Pour tout réel $x$, l’expression $\e^x\times \e^{x+2}$ est égale à :

a. $\e^{2x+2}$
b. $\e^{x^2+2}$
c. $\e^{\frac{x}{x+2}}$
d. $\e^{x^2+2x}$

$\quad$

Correction Question 1

Pour tout réel $x$ on a :
$\begin{align*} \e^x\times \e^{x+2}&=\e^{x+x+2}\\
&=\e^{2x+2}\end{align*}$

Réponse a

$\quad$

[collapse]

$\quad$

Question 2

Soit $g$ une fonction définie et dérivable en $1$. Dans un repère du plan, une équation de la tangente à la courbe de la fonction $g$ au point d’abscisse $1$ est :

a. $y=g(1)\times (x-1)-g'(1)$
b. $y=g'(1)\times (x-1)+g(1)$
c. $y=g'(1)\times (x+1)-g(1)$
d. $y=g(1)\times (x+1)+g'(1)$

$\quad$

Correction Question 2

Une équation de la tangente à la courbe de la fonction $g$ au point d’abscisse $1$ est $y=g'(1)\times (x-1)+g(1)$.

Réponse b

$\quad$

[collapse]

$\quad$

Question 3

Le plan est muni d’un repère $\Oij$. On considère la droite $(d)$ de vecteur directeur $\vec{u}(4 ; 7)$ et passant par le point $A(-2 ; 3)$. Une équation cartésienne de la droite $(d)$ est :

a. $-7x+4y-26=0$
b. $4x+7y-13=0$
c. $-7x+4y+26=0$
d. $4x-7y+29=0$

$\quad$

Correction Question 3

Un vecteur directeur de $(d)$ est $\vec{u}(4 ; 7)$.
Une équation cartésienne de $(d)$ est donc de la forme $7x-4y+c=0$.
Le point $A(-2;3)$ appartient à la droite.
Par conséquent $-14-12+c=0 \ssi c=26$
Une équation cartésienne de la droite $(d)$ est donc $7x-4y+26=0$ ou encore $-7x+4y-26=0$.

Réponse a

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

$t$ est un réel. On sait que $\cos(t)=\dfrac{2}{3}$. Alors $\cos(t+4\pi)+\cos(-t)$ est égal à :

a. $-\dfrac{4}{3}$
b. $0$
c. $\dfrac{4}{3}$
d. $\dfrac{2}{3}$

$\quad$

Correction Question 4

$\cos(t)=\dfrac{2}{3}$ donc $\cos(-t)=\dfrac{2}{3}$
et
$\begin{align*} \cos(t+4\pi)&=\cos(t+2\times 2\pi)\\
&=\cos(t) \\
&=\dfrac{2}{3}\end{align*}$
Ainsi $\cos(t+4\pi)+\cos(-t)=\dfrac{4}{3}$.

Réponse c

$\quad$

[collapse]

$\quad$

Question 5

On considère, dans un repère du plan, la parabole $(P)$ d’équation :
$y = -x^2+6x-9$. La parabole $(P)$ admet :

a. aucun point d’intersection avec l’axe des abscisses
b. un seul point d’intersection avec l’axe des abscisses
c. deux points d’intersection avec l’axe des abscisses
d. trois points d’intersection avec l’axe des abscisses

$\quad$

Correction Question 5

On veut résoudre l’équation :
$\begin{align*} -x^2+6x-9=0 &\ssi x^2-6x+9=0 \\
&\ssi (x-3)^2=0\\
&\ssi x=3\end{align*}$

Réponse b

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – Fonctions – 2020

Fonctions

E3C2 – 1ère

On considère la fonction $f$ définie et dérivable sur $\R$ par $f(x)=(ax+b)\e^{-0,1x}$ où $a$ et $b$ sont des réels fixés.
La courbe représentative $\mathcal{C}_f$ de la fonction $f$ est donnée ci-dessous, dans un repère orthogonal.

On a également représenté la tangente $T$ à $\mathcal{C}_f$ au point $A(0 ; 5)$.
On admet que cette tangente $T$ passe par le point $B(4 ; 19)$.

  1. En exprimant $f(0)$, déterminer la valeur de $b$.
    $\quad$
  2. a. À l’aide des coordonnées des points $A$ et $B$, déterminer une équation de la droite $T$.
    $\quad$
    b. Exprimer, pour tout réel $x$, $f'(x)$ en fonction de $x$ et de $a$ et en déduire que pour tout réel $x$, $f(x)=(4x+5)\e^{-0,1x}$
    $\quad$
  3. On souhaite déterminer le maximum de la fonction $f$ sur $\R$.
    a. Montrer que pour tout $x\in\R$, $f'(x)=(-0,4x+3,5)\e^{-0,1x}$.
    $\quad$
    b. Déterminer les variations de $f$ sur $\R$ et en déduire le maximum de $f$ sur $\R$.
    $\quad$

$\quad$

Correction Exercice

  1. On a :
    $\begin{align*}f(0)=b\e^0 \\
    &=b\end{align*}$
    Le point $A(0;5)$ appartient à $\mathcal{C}_f$.
    Donc $f(0)=5$. Par conséquent $b=5$.
    $\quad$
  2. a. Les points $A$ et $B$ n’ont pas la même abscisse. Une équation de de la droite $T$ est donc de la forme $y=mx+p$.
    On a :
    $\begin{align*} m&=\dfrac{19-5}{4-0}\\
    &=3,5\end{align*}$
    Elle passe par le point $A(0;5)$ donc $p=5$.
    Une équation de $T$ est donc $y=3,5x+5$.
    $\quad$
    b. Pour tout réel $x$ on a :
    $\begin{align*} f'(x)&=a\e^{-0,1x}+(ax+b)\times \left(-0,1\e^{-0,1x}\right) \\
    &=(a-0,1ax-0,1b)\e^{-0,1x}\end{align*}$
    $f'(0)$ est le coefficient directeur de $T$ donc $f'(0)=3,5$.
    Mais $f'(0)=a-0,1b$.
    D’après la question 1. on a $b=5$.
    Par conséquent $a-0,5=3,5 \ssi a=4$.
    On en déduit donc que, pour tout réel $x$ on a $f(x)=(4x+5)\e^{-0,1x}$.
    $\quad$
  3. a. D’après la question 2.b. on a donc :
    $\begin{align*} f'(x)&=(a-0,1ax-0,1b)\e^{-0,1x} \\
    &=(4-0,4x-0,5)\e^{-0,1x} \\
    &=(3,5-0,4x)\e^{-0,1x}\end{align*}$
    $\quad$
    b. La fonction exponentielle est strictement positive sur $\R$.
    Le signe de $f'(x)$ ne dépend donc que de celui de $3,5-0,4x$.
    $3,5-0,4x=0 \ssi -0,4x=-3,5 \ssi x=8,75$
    $3,5-0,4x>0\ssi -0,4x>-3,5 \ssi x<8,75$.
    La fonction $f$ est donc strictement croissante sur $]-\infty;8,75]$ et strictement décroissante sur $[8,75;+\infty[$.
    Elle admet un maximum qui est $f(8,75)=40\e^{-0,875}$.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend 5 questions indépendantes.Pour chacune d’elles, une seule des réponses proposées est exacte.
Indiquer pour chaque question sur la copie la lettre correspondant à la réponse choisie.Aucune justification n’est demandée.
Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une absence de réponse n’apporte ni ne retire de point.

Question 1

On considère une fonction $f$ définie et dérivable sur l’intervalle $[-1;4]$.
On a tracé ci-dessous la courbe $\mathcal{C}_f$ et la tangente à cette courbe au point $A$ de coordonnées $(2;2)$.

L’équation de la tangente à $\mathcal{C}_f$ au point $A$ est :

a. $y=\dfrac{2}{3}(x-2)+2$
b. $y=2(x-2)+\dfrac{2}{3}$
c. $y=\dfrac{2}{3}(x+2)+2$
d. $y=\dfrac{3}{2}(x-2)+2$

$\quad$

Correction Question 1

Le coefficient directeur de la tangente est :
$\begin{align*} m&=\dfrac{4-2}{5-2}\\
&=\dfrac{2}{3}\end{align*}$
De plus $f(2)=2$
Une équation de la tangente est donc $y=\dfrac{2}{3}(x-2)+2$

Réponse a

$\quad$

[collapse]

$\quad$

Question 2

Dans un repère orthonormal $(O;I,J)$, le point $A$, placé ci-dessous sur le cercle trigonométrique de centre $O$ d’origine $I$, est associé au nombre réel :

a. $\dfrac{11\pi}{6}$
b.
$\dfrac{2\pi}{3}$
c. $-\dfrac{2\pi}{3}$
d. $-\dfrac{3\pi}{4}$

$\quad$

Correction Question 2

L’abscisse du point $A$ semble être égale à $-0,5$ et son ordonnée est négative.
Or $\cos \left(-\dfrac{2\pi}{3}\right)=-0,5$ et $\sin \left(-\dfrac{2\pi}{3}\right)<0$

Réponse c

$\quad$

[collapse]

$\quad$

Question 3

On considère une fonction du second degré $f$ définie sur $\R$ par $$f(x)=ax^2+bx$$ où $a$ et $b$ sont deux nombres réels strictement positifs.
Quelle est la courbe représentative de cette fonction dans un repère orthonormé?

$\quad$

Correction Question 3

Le discriminant de cette fonction du second degré est :
$\begin{align*} \Delta&=b^2-4\times a\times 0\\
&=b^2\\
&>0\end{align*}$
L’équation $f(x)=0$ possède donc deux solutions réelles.
De plus, le coefficient principal est $a>0$

Réponse d

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

Dans le plan muni d’un repère orthonormé une droite $\mathcal{D}$ a pour équation $x-2y=1$.
Parmi les propositions suivantes, laquelle est correcte?

a. Le vecteur $\vec{u}\begin{pmatrix}1\\-2\end{pmatrix}$ est un vecteur directeur de la droite $\mathcal{D}$.
b. Le vecteur $\vec{u}\begin{pmatrix}1\\-2\end{pmatrix}$ est un vecteur normal de la droite $\mathcal{D}$.
c. Le point de coordonnées $A(1;-2)$ appartient à la droite $\mathcal{D}$.
d. L’ordonnée à l’origine de la droite $\mathcal{D}$ est égale à $1$.

$\quad$

Correction Question 4

Le vecteur $\vec{u}\begin{pmatrix}1\\-2\end{pmatrix}$ est un vecteur normal de la droite $\mathcal{D}$.

Réponse b

$\quad$

[collapse]

$\quad$

Question 5

Un homme marche pendant $10$ jours. Le premier jour, il parcourt 12 km. Chaque jour, il parcourt $500$ m de moins que la veille. Durant ces dix jours, il aura parcouru au total :

a. $95$ km
b. $97,5$ km
c. $19$ km
d. $84$ km

$\quad$

Correction Question 5

On appelle $u_n$ la distance parcourue le $n$-ième jour, en kilomètres.
On a ainsi $u_1=12$ et pour tout entier naturel $n$ compris entre $1$ et $9$ on a $u_{n+1}=u_n-0,5$.
La suite $\left(u_n\right)$ est donc arithmétique de raison $-0,5$ et de premier terme $u_1=12$.
Pour tout entier naturel $n$ on a donc $u_n=12-0,5(n-1)$
Ainsi $u_{10}=7,5$.
La distance totale parcourue est donc :
$\begin{align*} D&=10\times \dfrac{u_1+u_{10}}{2} \\
&=10\times \dfrac{12+7,5}{2}\\
&=97,5\end{align*}$

Réponse b

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence