Bac – Spécialité mathématiques – La Réunion – sujet 2 – 29 mars 2023

La Réunion – 29 mars 2023

Spécialité maths – Sujet 2 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Partie A

  1. On obtient l’arbre pondéré suivant :
    $\quad$

    $\quad$
  2. $\left(R,\conj{R}\right)$ forme un système complet d’événements fini. D’après la formule des probabilités totales :
    $\begin{align*} P(S)=P(S\cap R)+P\left(S\cap \conj{R}\right)&\ssi 0,82=P(R)P_R(S)+P\left(\conj{R}\right)P_{\conj{R}}(S) \\
    &\ssi 0,82=0,2\times 0,9+0,8x \\
    &\ssi 0,64=0,8x \\
    &\ssi x=0,8\end{align*}$
    $\quad$
  3. On veut calculer :
    $\begin{align*} P_S(R)&=\dfrac{P(S\cap R)}{P(S)} \\
    &=\dfrac{P(R)P_R(S)}{P(S)} \\
    &=\dfrac{0,2\times 0,9}{0,82} \\
    &=\dfrac{9}{41} \\
    &\approx 0,22\end{align*}$
    La probabilité que le client ait acheté un matelas RESSORTS sachant qu’il a été satisfait de son achat est environ égal à $0,22$.
    $\quad$

Partie B

  1. a. $X$ suit la loi binomiale de paramètres $n=5$ et $p=0,82$.
    $\quad$
    b. La probabilité qu’au plus trois clients soient satisfaits de leur achat est $$P(X\pp 3)\approx 0,222$$
    $\quad$
  2. a. On répète $n$ fois de façon indépendante la même expérience de Bernoulli de paramètre $p=0,82$.
    On appelle $Y$ la variable aléatoire qui donne le nombre de clients satisfaits de leur achat parmi ces $n$ clients.
    $Y$ suit donc la loi binomiale de paramètres $n$ et $p=0,82$.
    Ainsi,
    $\begin{align*} p_n&=P(Y=n) \\
    &=0,82^n\end{align*}$
    $\quad$
    b.
    $\begin{align*} p_n<0,01 &\ssi 0,82^n <0,01 \\
    &\ssi n\ln(0,82) < \ln(0,01) \\
    &\ssi n>\dfrac{\ln(0,01)}{\ln(0,82)}\qquad \text{(car $\ln(0,82)<0$)}\end{align*} $
    Or $\dfrac{\ln(0,01)}{\ln(0,82)}\approx 23,2$.
    Ainsi $p_n<0,01$ si, et seulement si, $n\pg 24$.
    La probabilité que tous les clients soient satisfaits de leur achat est inférieure à $1\%$ dès qu’il y a au moins $24$ clients.
    $\quad$

Ex 2

Exercice 2

  1. On a
    $\begin{align*} u_1&=\dfrac{6u_0+2}{u_0+5} \\
    &=\dfrac{48+2}{13 }\\
    &=\dfrac{50}{13}\end{align*}$
    $\quad$
  2. a. La fonction $f$ est dérivable sur $[0;+\infty[$ en tant que quotient de fonctions dérivables dont le dénominateur ne s’annule pas sur cet intervalle.
    Pour tout $x>0$ on a
    $\begin{align*} f'(x)&=\dfrac{6(x+5)-(6x+2)}{(x+5)^2} \\
    &=\dfrac{28}{(x+5)^2}\\
    &>0\end{align*}$
    La fonction $f$ est donc strictement croissante sur l’intervalle $[0;+\infty[$.
    $\quad$
    $f(2)=\dfrac{14}{7}=2$.
    La fonction $f$ étant strictement croissante sur $[0;+\infty[$, pour tout $x>2$ on a $f(x)>f(2)$ soit $f(x)>2$.
    $\quad$
    b. Pour tout $n\in \N$ on a $P(n):~u_n>2$.
    Initialisation : $u_0=8>2$. Donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose que $P(n)$ est vraie.
    Donc $u_n>2$. D’après la question 2.a, $f\left(u_n\right) > 2$ soit $u_{n+1}>2$.
    Par conséquent $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Pour tout $n\in \N$, $u_n>2$.
    $\quad$
  3. a. Pour tout $n\in \N$ on a $u_{n+1}-u_n=\dfrac{\left(2-u_n\right)\left(u_n+1\right)}{u_n+5}$.
    D’après la question précédente, pour tout $n\in \N$, $u_n>2$.
    Ainsi $2-u_n<0$, $u_n+1>0$ et $u_n+5>0$.
    Donc $u_{n+1}-u_n<0$ et la suite $\left(u_n\right)$ est décroissante.
    $\quad$
    b. La suite $\left(u_n\right)$ est décroissante et minorée par $2$; elle converge donc .
  4. a. $v_0=\dfrac{8-2}{8+1}=\dfrac{2}{3}$
    $\quad$
    b. Soit $n\in \N$.
    $\begin{align*} v_{n+1}&=\dfrac{u_{n+1}-2}{u_{n+1}+1} \\
    &=\dfrac{\dfrac{6u_n+2}{u_n+5}-2}{\dfrac{6u_n+2}{u_n+5}+1} \\
    &=\dfrac{~\dfrac{6u_n+2-2u_n-10}{u_n+5}~}{\dfrac{6u_n+2+u_n+5}{u_n+5}} \\
    &=\dfrac{4u_n-8}{7u_n+7} \\
    &=\dfrac{4}{7}\times \dfrac{u_n-2}{u_n+1}\\
    &=\dfrac{4}{7}v_n\end{align*}$
    La suite $\left(v_n\right)$ est donc géométrique de raison $\dfrac{4}{7}$ et de premier terme $v_0=\dfrac{2}{3}$.
    $\quad$
    c. Pour tout $n\in \N$, on a $v_n=\dfrac{2}{3}\left(\dfrac{4}{7}\right)^n$.
    $-1<\dfrac{4}{7}<1$ donc $\lim\limits_{n\to +\infty} v_n=0$.
    $\quad$
    Pour tout $n\in \N$ on a
    $\begin{align*} v_n=\dfrac{u_n-2}{u_n+1}&\ssi v_n\left(u_n+1\right)=u_n-2 \\
    &\ssi u_nv_n+v_n=u_n-2\\
    &\ssi u_nv_n-u_n=-2-v_n\\
    &\ssi u_n\left(v_n-1\right)=-2-v_n \\
    &\ssi u_n=\dfrac{-2-v_n}{v_n-1}\end{align*}$
    Par conséquent $\lim\limits_{n\to +\infty} u_n=\lim\limits_{n\to +\infty}\dfrac{-2-v_n}{v_n-1}=2$.
    $\quad$
  5. On a $u_{13}\approx 2,0014>2,001$ et $u_{14}\approx 2,000~8<2,001$.
    La commande $\texttt{seuil(2.001)}$ renverra donc la valeur $14$.
    Il s’agit du rang à partir duquel tous les termes de la suite prendront des valeurs inférieures ou égales à $2,001$.

Ex 3

Exercice 3

  1. Une représentation paramétrique de la droite $(d)$ est $$\begin{cases} x=1\\y=1+2t\\z=-t\end{cases} \qquad \forall t\in \R$$
    $\quad$
  2. Un vecteur normal au plan $\mathscr{P}$ est $\vec{w}\begin{pmatrix}1\\4\\2\end{pmatrix}$.
    $\vec{u}$ et $\vec{w}$ ne sont pas colinéaires car ils n’ont pas la même composante nulle.
    Ainsi $(d)$ et $\mathscr{P}$ sont sécants.
    $1-4+2+1=4-4=0$ : le point de coordonnées $(1;-1;1)$ appartient au plan $\mathscr{P}$.
    En prenant $t=-1$ dans la représentation paramétrique de $(d)$ on obtient le point de coordonnées $(1;-1;1)$.
    Ainsi la droite $(d)$ et le plan $\mathscr{P}$ sont sécants en un point $B$ de coordonnées $(1;-1;1)$.
    $\quad$
  3. a. $\vect{AC}\begin{pmatrix} 0\\-2\\-1\end{pmatrix}$ et $\vect{AB}\begin{pmatrix} 0\\-2\\1\end{pmatrix}$.
    $\dfrac{-2}{-2}=1$ et $\dfrac{-1}{1}=-1$ donc $\vect{AB}$ et $\vect{AC}$ ne sont pas colinéaires.
    Par conséquent $A$, $B$ et $C$ définissent bien un plan.
    $\quad$
    b. $\vec{n}.\vect{AC}=0+0+0=0$ et $\vec{n}.\vect{AB}=0+0+0$.
    Le vecteur $\vec{n}$ est orthogonal à deux vecteurs non colinéaires du plan $(ABC)$.
    Donc $\vec{n}$ est un vecteur normal au plan $(ABC)$.
    $\quad$
    c. Une équation cartésienne du plan $(ABC)$ est donc de la forme $x+d=0$.
    $A(1;1;0)$ appartient à ce plan. Par conséquent $1+d=0 \ssi d=-1$.
    Une équation cartésienne du plan $(ABC)$ est $x-1=0$.
    $\quad$
  4. a.
    $\begin{align*} AB&=\sqrt{0^2+(-2)^2+1^2}\\
    &=\sqrt{5}\end{align*}$
    $\begin{align*} AC&=\sqrt{0^2+(-2)^2+(-1)^2}\\
    &=\sqrt{5}\end{align*}$
    Ainsi $AB=AC$ et le triangle $ABC$ est isocèle en $A$.
    $\quad$
    b. $H$ est le milieu de $[BC]$. Il a donc pour coordonnées $\left(\dfrac{1+1}{2};\dfrac{-1-1}{2};\dfrac{1-1}{2}\right)$ soit $(1;-1;0)$.
    Donc $\vect{AH}\begin{pmatrix} 0\\-2\\0\end{pmatrix}$
    Donc :
    $\begin{align*} AH&=\sqrt{0^2+(-2)^1+0} \\
    &=2\end{align*}$
    $\vect{BC}\begin{pmatrix}0\\0\\-2\end{pmatrix}$
    On a donc également $BC=2$.
    Le triangle $ABC$ est isocèle en $A$ donc $[AH]$ est à la fois une médiane, une médiatrice, une hauteur et une bissectrice du triangle.
    L’aire du triangle $ABC$ est :
    $\begin{align*} \mathscr{A}&=\dfrac{AH\times BC}{2} \\
    &=2\text{ u.a.}\end{align*}$
    $\quad$
  5. a. $\vect{BD}\begin{pmatrix} -1\\0\\0\end{pmatrix}$
    Ainsi $\vec{n}=-\vect{BD}$.
    $\vect{BD}$ est donc normal au plan $(ABC)$.
    Par conséquent $(BD)$ est une hauteur de la pyramide $ABCD$.
    $\quad$
    b. $\quad$
    $\begin{align*} BD&=\sqrt{1^2+0^2+0^2}\\
    &=1\end{align*}$
    Par conséquent :
    $\begin{align*} V&=\dfrac{1}{3}\times \mathscr{A}\times BD\\
    &=\dfrac{2}{3} \text{ u.v.}\end{align*}$
    $\quad$

 

Ex 4

Exercice 4

  1. La fonction $f$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a :
    $\begin{align*} f'(x)&=2\e^x+2x\e^x \\
    &=2(x+1)\e^x\end{align*}$
    La fonction exponentielle est strictement positive sur $\R$.
    Le signe de $f'(x)$ ne dépend donc que de celui de $x+1$.
    Or $x+1=0\ssi x=-1$ et $x+1>0\ssi x>-1$.
    La fonction $f$ est donc strictement décroissante sur $]-\infty;-1]$ et strictement croissante sur $[-1;+\infty[$.
    De plus $f(-1)=-2\e^{-1} \approx -0,736$.
    $\quad$
    La fonction $f$ est continue (car dérivable) et strictement décroissante sur $]-\infty;-1]$
    Par croissances comparées $\lim\limits_{x\to -\infty} f(x)=0>-\dfrac{73}{100}$ et $f(-1)<-\dfrac{73}{100}$
    D’après le théorème de la bijection, l’équation $f(x)=-\dfrac{73}{100}$ possède une unique solution sur $]-\infty;-1]$.
    $\quad$
    La fonction $f$ est continue (car dérivable) et strictement croissante sur $[-1;+\infty[$
    $f(-1)<-\dfrac{73}{100}$ et $\lim\limits_{x\to +\infty} f(x)=+\infty$ (produit de deux fonctions tendant vers $+\infty$).
    D’après le théorème de la bijection, l’équation $f(x)=-\dfrac{73}{100}$ possède une unique solution sur $[-1;+\infty[$.
    $\quad$
    L’équation $f(x)=-\dfrac{73}{100}$ possède donc exactement deux solutions sur $\R$.
    Réponse c
    $\quad$
  2. $\lim\limits_{x\to -\infty} x+1=-\infty$ et $\lim\limits_{x\to -\infty} \e^x=0^+$.
    Par conséquent $\lim\limits_{x\to -\infty} g(x)=-\infty$.
    Réponse a
    $\quad$
  3. La fonction $h$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a :
    $\begin{align*} h'(x)&=4\e^{2x}+2(4x-16)\e^{2x} \\
    &=(4+8x-32)\e^{2x} \\
    &=(8x-28)\e^{2x} \\
    &=4(2x-7)\e^{2x}\end{align*}$
    La fonction $h’$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a :
    $\begin{align*} h\dsec(x)&=4\left(2\e^{2x}+2(2x-7)\e^{2x}\right) \\
    &=8(1+2x-7)\e^{2x} \\
    &=8(2x-6)\e^{2x}\end{align*}$
    $h\dsec(x)>0 \ssi 2x-6>0 \ssi x>3$ et $\dsec(x)=0 \ssi 2x-6=0\ssi x=3$.
    La fonction $h\dsec$ s’annule en changeant de signe en $3$.
    Le point d’abscisse $3$ est donc un point d’inflexion pour la courbe $\mathscr{C}_h$.
    Réponse b
    $\quad$
  4. La fonction $k$ est dérivable sur $]0;+\infty[$ en tant que somme de fonctions dérivables sur cet intervalle.
    Pour tout réel $x>0$ on a $k'(x)=\dfrac{3}{x}-1$
    Une équation de $T$ est $y=k'(\e)(x-\e)+k(\e)$.
    Par conséquent $k'(\e)=\dfrac{3-\e}{\e}$ et $k(\e)=3-\e$.
    Une équation de $T$ est donc $y=\dfrac{3-\e}{\e}(x-\e)+3-\e$
    Soit $y=\dfrac{3-\e}{\e}x$
    Réponse b
    $\quad$
  5. $\left(\ln(x)\right)^2+10\ln(x)+21=0 \ssi \begin{cases} X^2+10X+21=0 \\X=\ln(x)\end{cases}$
    Le discriminant de l’équation $X^2+10X+21=0$ est $\Delta=16$.
    Elle possède donc deux solutions $\dfrac{-10-\sqrt{16}}{2}=-7$ et $\dfrac{-10+\sqrt{16}}{2}=-3$.
    $\ln(x)=-7 \ssi x=\e^{-7}$
    $\ln(x)=-3\ssi x=\e^{-3}$.
    Par conséquent $\e^{-7}$ et $\e^{-3}$ sont les solutions de l’équation $\left(\ln(x)\right)^2+10\ln(x)+21=0$.
    Réponse c
    $\quad$

 

Énoncé

La qualité de rédaction, la clarté et la précision des raisonnements seront prises en compte dans l’appréciation de la copie. Les traces de recherche, même incomplètes ou infructueuses, seront valorisées.

Exercice 1     5 points

Un commerçant vend deux types de matelas: matelas RESSORTS et matelas MOUSSE.
On suppose que chaque client achète un seul matelas.

On dispose des informations suivantes :

  • $20\%$ des clients achètent un matelas RESSORTS. Parmi eux, $90\%$ sont satisfaits de leur achat.
  • $82\%$ des clients sont satisfaits de leur achat.

Les deux parties peuvent être traitées de manière indépendante.

Partie A

On choisit au hasard un client et on note les évènements :

  • $R$ : : « le client achète un matelas RESSORTS »,
  • $S$ : « le client est satisfait de son achat ».

On note $x = P_{\conj{R}}(S)$, où $P_{\conj{R}}(S)$ désigne la probabilité de $S$ sachant que $R$ n’est pas réalisé.

  1. Recopier et compléter l’arbre pondéré ci-dessous décrivant la situation.
    $\quad$
    $\quad$
  2. Démontrer que $x = 0,8$.
    $\quad$
  3. On choisit un client satisfait de son achat.
    Quelle est la probabilité qu’il ait acheté un matelas RESSORTS ?
    On arrondira le résultat à $10^{-2}$.

Partie B

  1. On choisit $5$ clients au hasard. On considère la variable aléatoire $X$ qui donne le nombre de clients satisfaits de leur achat parmi ces $5$ clients.
    a. On admet que $X$ suit une loi binomiale. Donner ses paramètres.
    $\quad$
    b. Déterminer la probabilité qu’au plus trois clients soient satisfaits de leur achat.
    On arrondira le résultat à $10^{-3}$.
  2. Soit $n$ un entier naturel non nul.
    On choisit à présent $n$ clients au hasard. Ce choix peut être assimilé à un tirage au sort avec remise.
    a. On note $p_n$ la probabilité que les $n$ clients soient tous satisfaits de leur achat.
    Démontrer que $p_n = 0,82^n$.
    $\quad$
    b. Déterminer les entiers naturels $n$ tels que $p_n < 0,01$.
    Interpréter dans le contexte de l’exercice.
    $\quad$

$\quad$

Exercice 2     5 points

On considère la suite $\left(u_n\right)$ définie par $u_0 = 8$ et, pour tout entier naturel $n$, $$u_{n +1} = \dfrac{6u_n+2}{u_n +5}$$

  1. Calculer $u_1$.
    $\quad$
  2. Soit $f$ la fonction définie sur l’intervalle $[0;+\infty[$ par : $$f(x) = \dfrac{6x+2 }{x+5}$$
    Ainsi, pour tout entier naturel $n$, on a : $u_{n+1}=f\left(u_n\right)$.
    a. Démontrer que la fonction $f$ est strictement croissante sur l’intervalle $[0;+\infty[$.
    En déduire que pour tout réel $x > 2$, on a $f(x) > 2$.
    $\quad$
    b. Démontrer par récurrence que, pour tout entier naturel $n$, on a $u_n > 2$.
    $\quad$
  3. On admet que, pour tout entier naturel $n$, on a : $$u_{n+1}-u_n = \dfrac{\left(2-u_n\right)\left(u_n+1\right)}{u_n +5}$$
    a. Démontrer que la suite $\left(u_n\right)$ est décroissante.
    $\quad$
    b. En déduire que la suite $\left(u_n\right)$ est convergente.
    $\quad$
  4. On définit la suite $\left(v_n\right)$ pour tout entier naturel par: $$v_n = \dfrac{u_n-2}{u_n+1}$$
    a. Calculer $v_0$.
    $\quad$
    b. Démontrer que $\left(v_n\right)$ est une suite géométrique de raison $\dfrac{4}{7}$.
    $\quad$
    c. Déterminer, en justifiant, la limite de $\left(v_n\right)$.
    En déduire la limite de $\left(u_n\right)$.
    $\quad$
  5. On considère la fonction Python $\text{seuil}$ ci-dessous, où $\text{A}$ est un nombre réel strictement plus grand que $2$.
    $$\begin{array}{|l|}
    \hline
    \text{def seuil (A) :}\\
    \quad \text{n = 0}\\
    \quad \text{u = 8}\\
    \quad \text{while u > A :}\\
    \qquad \text{u = (6*u + 2) / (u + 5)}\\
    \qquad \text{n = n + 1}\\
    \quad \text{return n}\\
    \hline
    \end{array}$$
    Donner, sans justification, la valeur renvoyée par la commande $\text{seuil (2.001)}$ puis interpréter cette valeur dans le contexte de l’exercice.
    $\quad$

$\quad$

Exercice 3     5 points

On se place dans l’espace rapporté à un repère orthonormé $\Oijk$.
On considère le point $A(1;1;0)$ et le vecteur $\vec{u}\begin{pmatrix}0\\2\\- 1\end{pmatrix}$.
On considère le plan $\mathcal{P}$ d’équation : $x+4y+2z+1 = 0$.

  1. On note $(d)$ la droite passant par A et dirigée par le vecteur $\vec{u}$.
    Déterminer une représentation paramétrique de $(d)$.
    $\quad$
  2. Justifier que la droite $(d)$ et le plan $\mathcal{P}$ sont sécants en un point $B$ dont les coordonnées sont $(1;-1;1)$.
    $\quad$
  3. On considère le point $C(1;-1;-1)$.
    a. Vérifier que les points $A$, $B$ et $C$ définissent bien un plan.
    $\quad$
    b. Montrer que le vecteur  $\vec{n}\begin{pmatrix}1\\0\\0\end{pmatrix}$ est un vecteur normal au plan $(ABC)$.
    $\quad$
    c. Déterminer une équation cartésienne du plan $(ABC)$.
    $\quad$
  4. a. Justifier que le triangle $ABC$ est isocèle en $A$.
    $\quad$
    b. Soit $H$ le milieu du segment $[BC]$.
    Calculer la longueur $AH$ puis l’aire du triangle $ABC$.
    $\quad$
  5. Soit $D$ le point de coordonnées $(0;-1;1)$.
    a. Montrer que la droite $(BD)$ est une hauteur de la pyramide $ABCD$.
    $\quad$
    b. Déduire des questions précédentes le volume de la pyramide $ABCD$.
    $\quad$
    On rappelle que le volume $V$ d’une pyramide est donné par: $$V = \dfrac13 \mathcal{B} \times h$$
    où $\mathcal{B}$ est l’aire d’une base et $h$ la hauteur correspondante.
    $\quad$

$\quad$

Exercice 4     5 points

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie. Aucune justification n’est demandée. Une réponse fausse, une absence de réponse, ou une réponse multiple, ne rapporte ni n’enlève de point.

  1. On considère la fonction $f$ définie sur $\R$ par $f(x) = 2x\e^x$.
    Le nombre de solutions sur $\R$ de l’équation $f(x) = -\dfrac{73}{100}$ est égal à :
    a. $0$
    b. $1$
    c. $2$
    d. une infinité.
    $\quad$
  2. On considère la fonction $g$ définie sur $\R$ par : $$g(x) = \dfrac{x+ 1}{\e^x}$$
    La limite de la fonction $g$ en $- \infty$ est égale à :
    a. $-\infty$
    b. $+\infty$
    c. $0$
    d. elle n’existe pas.
    $\quad$
  3. On considère la fonction $h$ définie sur $\R$ par: $$h(x) = (4x-16)\e^{2x}$$
    On note $\mathcal{C}_h$ la courbe représentative de $h$ dans un repère orthogonal.
    On peut affirmer que:
    a. $h$ est convexe sur $\R$.
    b. $\mathcal{C}_h$ possède un point d’inflexion en $x = 3$.
    c. $h$ est concave sur $\R$.
    d. $\mathcal{C}_h$ possède un point d’inflexion en $x = 3,5$.
    $\quad$
  4. On considère la fonction $k$ définie sur l’intervalle $]0; +\infty[$ par : $$k(x) = 3 \ln (x)-x$$
    On note $\mathcal{C}$ la courbe représentative de la fonction $k$ dans un repère orthonormé.
    On note $T$ la tangente à la courbe $\mathcal{C}$ au point d’abscisse $x = \e$.
    Une équation de $T$ est:
    a. $y = (3-\e)x$
    b. $y = \left(\dfrac{3-\e}{\e}\right)x$
    c. $y = \left(\dfrac{3}{\e}- 1\right)x + 1$
    d. $y = (\e-1)x + 1$
    $\quad$
  5. On considère l’équation $\left(\ln (x)\right)^2+10\ln(x)+21 = 0$, avec $x \in ]0;+\infty[$.
    Le nombre de solutions de cette équation est égal à :
    a. $0$
    b. $1$
    c. $2$
    d. une infinité.
    $\quad$

$\quad$