Bac – Spécialité mathématiques – La Réunion – sujet 2 – 29 mars 2023

La Réunion – 29 mars 2023

Spécialité maths – Sujet 2 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Partie A

  1. On obtient l’arbre pondéré suivant :
    $\quad$

    $\quad$
  2. $\left(R,\conj{R}\right)$ forme un système complet d’événements fini. D’après la formule des probabilités totales :
    $\begin{align*} P(S)=P(S\cap R)+P\left(S\cap \conj{R}\right)&\ssi 0,82=P(R)P_R(S)+P\left(\conj{R}\right)P_{\conj{R}}(S) \\
    &\ssi 0,82=0,2\times 0,9+0,8x \\
    &\ssi 0,64=0,8x \\
    &\ssi x=0,8\end{align*}$
    $\quad$
  3. On veut calculer :
    $\begin{align*} P_S(R)&=\dfrac{P(S\cap R)}{P(S)} \\
    &=\dfrac{P(R)P_R(S)}{P(S)} \\
    &=\dfrac{0,2\times 0,9}{0,82} \\
    &=\dfrac{9}{41} \\
    &\approx 0,22\end{align*}$
    La probabilité que le client ait acheté un matelas RESSORTS sachant qu’il a été satisfait de son achat est environ égal à $0,22$.
    $\quad$

Partie B

  1. a. $X$ suit la loi binomiale de paramètres $n=5$ et $p=0,82$.
    $\quad$
    b. La probabilité qu’au plus trois clients soient satisfaits de leur achat est $$P(X\pp 3)\approx 0,222$$
    $\quad$
  2. a. On répète $n$ fois de façon indépendante la même expérience de Bernoulli de paramètre $p=0,82$.
    On appelle $Y$ la variable aléatoire qui donne le nombre de clients satisfaits de leur achat parmi ces $n$ clients.
    $Y$ suit donc la loi binomiale de paramètres $n$ et $p=0,82$.
    Ainsi,
    $\begin{align*} p_n&=P(Y=n) \\
    &=0,82^n\end{align*}$
    $\quad$
    b.
    $\begin{align*} p_n<0,01 &\ssi 0,82^n <0,01 \\
    &\ssi n\ln(0,82) < \ln(0,01) \\
    &\ssi n>\dfrac{\ln(0,01)}{\ln(0,82)}\qquad \text{(car $\ln(0,82)<0$)}\end{align*} $
    Or $\dfrac{\ln(0,01)}{\ln(0,82)}\approx 23,2$.
    Ainsi $p_n<0,01$ si, et seulement si, $n\pg 24$.
    La probabilité que tous les clients soient satisfaits de leur achat est inférieure à $1\%$ dès qu’il y a au moins de $24$ clients.
    $\quad$

Ex 2

Exercice 2

  1. On a
    $\begin{align*} u_1&=\dfrac{6u_0+2}{u_0+5} \\
    &=\dfrac{48+2}{13 }\\
    &=\dfrac{50}{13}\end{align*}$
    $\quad$
  2. a. La fonction $f$ est dérivable sur $[0;+\infty[$ en tant que quotient de fonctions dérivables dont le dénominateur ne s’annule pas sur cet intervalle.
    Pour tout $x>0$ on a
    $\begin{align*} f'(x)&=\dfrac{6(x+5)-(6x+2)}{(x+5)^2} \\
    &=\dfrac{28}{(x+5)^2}\\
    &>0\end{align*}$
    La fonction $f$ est donc strictement croissante sur l’intervalle $[0;+\infty[$.
    $\quad$
    $f(2)=\dfrac{14}{7}=2$.
    La fonction $f$ étant strictement croissante sur $[0;+\infty[$, pour tout $x>2$ on a $f(x)>f(2)$ soit $f(x)>2$.
    $\quad$
    b. Pour tout $n\in \N$ on a $P(n):~u_n>2$.
    Initialisation : $u_0=8>2$. Donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose que $P(n)$ est vraie.
    Donc $u_n>2$. D’après la question 2.a, $f\left(u_n\right) > 2$ soit $u_{n+1}>2$.
    Par conséquent $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Pour tout $n\in \N$, $u_n>2$.
    $\quad$
  3. a. Pour tout $n\in \N$ on a $u_{n+1}-u_n=\dfrac{\left(2-u_n\right)\left(u_n+1\right)}{u_n+5}$.
    D’après la question précédente, pour tout $n\in \N$, $u_n>2$.
    Ainsi $2-u_n<0$, $u_n+1>0$ et $u_n+5>0$.
    Donc $u_{n+1}-u_n<0$ et la suite $\left(u_n\right)$ est décroissante.
    $\quad$
    b. La suite $\left(u_n\right)$ est décroissante et minorée par $2$; elle converge donc .
  4. a. $v_0=\dfrac{8-2}{8+1}=\dfrac{2}{3}$
    $\quad$
    b. Soit $n\in \N$.
    $\begin{align*} v_{n+1}&=\dfrac{u_{n+1}-2}{u_{n+1}+1} \\
    &=\dfrac{\dfrac{6u_n+2}{u_n+5}-2}{\dfrac{6u_n+2}{u_n+5}+1} \\
    &=\dfrac{~\dfrac{6u_n+2-2u_n-10}{u_n+5}~}{\dfrac{6u_n+2+u_n+5}{u_n+5}} \\
    &=\dfrac{4u_n-8}{7u_n+7} \\
    &=\dfrac{4}{7}\times \dfrac{u_n-2}{u_n+1}\end{align*}$
    La suite $\left(u_n\right)$ est donc géométrique de raison $\dfrac{4}{7}$ et de premier terme $v_0=\dfrac{2}{3}$.
    $\quad$
    c. Pour tout $n\in \N$, on a $v_n=\dfrac{2}{3}\left(\dfrac{4}{7}\right)^n$.
    $0<\dfrac{4}{7}<1$ donc $\lim\limits_{n\to +\infty} v_n=0$.
    $\quad$
    Pour tout $n\in \N$ on a
    $\begin{align*} v_n=\dfrac{u_n-2}{u_n+1}&\ssi v_n\left(u_n+1\right)=u_n-2 \\
    &\ssi u_nv_n+v_n=u_n-2\\
    &\ssi u_nv_n-u_n=-2-v_n\\
    &\ssi u_n\left(v_n-1\right)=-2-v_n \\
    &\ssi u_n=\dfrac{-2-v_n}{v_n-1}\end{align*}$
    Par conséquent $\lim\limits_{n\to +\infty} u_n=\lim\limits_{n\to +\infty}\dfrac{-2-v_n}{v_n-1}=2$.
    $\quad$
  5. On a $u_{13}\approx 2,0014>2,001$ et $u_{14}\approx 2,000~8<2,001$.
    La commande $\texttt{seuil(2.001)}$ renverra donc la valeur $14$.
    Il s’agit du rang à partir duquel tous les termes de la suite prendront des valeurs inférieures ou égales à $2,001$.

Ex 3

Exercice 3

  1. Une représentation paramétrique de la droite $(d)$ est $$\begin{cases} x=1\\y=1+2t\\z=-t\end{cases} \qquad \forall t\in \R$$
    $\quad$
  2. Un vecteur normal au plan $\mathscr{P}$ est $\vec{w}\begin{pmatrix}1\\4\\2\end{pmatrix}$.
    $\vec{u}$ et $\vec{w}$ ne sont pas colinéaires car ils n’ont pas la même composante nulle.
    Ainsi $(d)$ et $\mathscr{P}$ sont sécants.
    $1-4+2+1=4-4=0$ : le point de coordonnées $(1;-1;1)$ appartient au plan $\mathscr{P}$.
    En prenant $t=-1$ dans la représentation paramétrique de $(d)$ on obtient le point de coordonnées $(1;-1;1)$.
    Ainsi la droite $(d)$ et le plan $\mathscr{P}$ sont sécants en un point $B$ de coordonnées $(1;-1;1)$.
    $\quad$
  3. a. $\vect{AC}\begin{pmatrix} 0\\-2\\-1\end{pmatrix}$ et $\vect{AB}\begin{pmatrix} 0\\-2\\1\end{pmatrix}$.
    $\dfrac{-2}{-2}=1$ et $\dfrac{-1}{1}=-1$ donc $\vect{AB}$ et $\vect{AC}$ ne sont pas colinéaires.
    Par conséquent $A$, $B$ et $C$ définissent bien un plan.
    $\quad$
    b. $\vec{n}.\vect{AC}=0+0+0=0$ et $\vec{n}.\vect{AB}=0+0+0$.
    Le vecteur $\vec{n}$ est orthogonal à deux vecteurs non colinéaires du plan $(ABC)$.
    Donc $\vec{n}$ est un vecteur normal au plan $(ABC)$.
    $\quad$
    c. Une équation cartésienne du plan $(ABC)$ est donc de la forme $x+d=0$.
    $A(1;1;0)$ appartient à ce plan. Par conséquent $1+d=0 \ssi d=-1$.
    Une équation cartésienne du plan $(ABC)$ est $x-1=0$.
    $\quad$
  4. a.
    $\begin{align*} AB&=\sqrt{0^2+(-2)^2+1^2}\\
    &=\sqrt{5}\end{align*}$
    $\begin{align*} AC&=\sqrt{0^2+(-2)^2+(-1)^2}\\
    &=\sqrt{5}\end{align*}$
    Ainsi $AB=AC$ et le triangle $ABC$ est isocèle en $A$.
    $\quad$
    b. $H$ est le milieu de $[BC]$. Il a donc pour coordonnées $\left(\dfrac{1+1}{2};\dfrac{-1-1}{2};\dfrac{1-1}{2}\right)$ soit $(1;-1;0)$.
    Donc $\vect{AH}\begin{pmatrix} 0\\-2\\0\end{pmatrix}$
    Donc :
    $\begin{align*} AH&=\sqrt{0^2+(-2)^1+0} \\
    &=2\end{align*}$
    $\vect{BC}\begin{pmatrix}0\\0\\-2\end{pmatrix}$
    On a donc également $BC=2$.
    L’aire du triangle $ABC$ est :
    $\begin{align*} \mathscr{A}&=\dfrac{AH\times BC}{2} \\
    &=2\text{ u.a.}\end{align*}$
    $\quad$
  5. a. $\vect{BD}\begin{pmatrix} 1\\0\\0\end{pmatrix}$
    Ainsi $\vec{n}=\vect{BD}$.
    $\vect{BD}$ est donc normal au plan $(ABC)$.
    Par conséquent $(BD)$ est une hauteur de la pyramide $ABCD$.
    $\quad$
    b. $\quad$
    $\begin{align*} BD&=\sqrt{1^2+0^2+0^2}\\
    &=1\end{align*}$
    Par conséquent :
    $\begin{align*} V&=\dfrac{1}{3}\times \mathscr{A}\times BD\\
    &=\dfrac{2}{3} \text{ u.v.}\end{align*}$
    $\quad$

 

Ex 4

Exercice 4

  1. La fonction $f$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a :
    $\begin{align*} f'(x)&=2\e^x+2x\e^x \\
    &=2(x+1)\e^x\end{align*}$
    La fonction exponentielle est strictement positive sur $\R$.
    Le signe de $f'(x)$ ne dépend donc que de celui de $x+1$.
    Or $x+1=0\ssi x=-1$ et $x+1>0\ssi x>-1$.
    La fonction $f$ est donc strictement décroissante sur $]-\infty;-1]$ et strictement croissante sur $[-1;+\infty[$.
    De plus $f(-1)=-2\e^{-1} \approx -0,736$.
    $\quad$
    La fonction $f$ est continue (car dérivable) et strictement décroissante sur $]-\infty;-1]$
    Par croissances comparées $\lim\limits_{x\to -\infty} f(x)=0>-\dfrac{73}{100}$ et $f(-1)<-\dfrac{73}{100}$
    D’après le théorème de la bijection, l’équation $f(x)=-\dfrac{73}{100}$ possède une unique solution sur $]-\infty;-1]$.
    $\quad$
    La fonction $f$ est continue (car dérivable) et strictement croissante sur $[-1;+\infty[$
    $f(-1)<-\dfrac{73}{100}$ et $\lim\limits_{x\to +\infty} f(x)=+\infty$ (produit de deux fonctions tendant vers $+\infty$).
    D’après le théorème de la bijection, l’équation $f(x)=-\dfrac{73}{100}$ possède une unique solution sur $[-1;+\infty[$.
    $\quad$
    L’équation $f(x)=-\dfrac{73}{100}$ possède donc exactement deux solutions sur $\R$.
    Réponse c
    $\quad$
  2. $\lim\limits_{x\to -\infty} x+1=-\infty$ et $\lim\limits_{x\to -\infty} \e^x=0^+$.
    Par conséquent $\lim\limits_{x\to -\infty} g(x)=-\infty$.
    Réponse a
    $\quad$
  3. La fonction $h$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a :
    $\begin{align*} h'(x)&=4\e^{2x}+2(4x-16)\e^{2x} \\
    &=(4+8x-32)\e^{2x} \\
    &=(8x-28)\e^{2x} \\
    &=4(2x-7)\e^{2x}\end{align*}$
    La fonction $h’$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a :
    $\begin{align*} h\dsec(x)&=4\left(2\e^{2x}+2(2x-7)\e^{2x}\right) \\
    &=8(2+4x-14)\e^{2x} \\
    &=8(4x-12)\e^{2x}\end{align*}$
    $h\dsec(x)>0 \ssi 4x-12>0 \ssi x>3$ et $\dsec(x)=0 \ssi 4x-12=0\ssi x=3$.
    La fonction $h\dsec$ s’annule en changeant de signe en $3$.
    Le point d’abscisse $3$ est donc un point d’inflexion pour la courbe $\mathscr{C}_h$.
    Réponse b
    $\quad$
  4. La fonction $k$ est dérivable sur $]0;+\infty[$ en tant que somme de fonctions dérivables sur cet intervalle.
    Pour tout réel $x>0$ on a $k'(x)=\dfrac{3}{x}-1$
    Une équation de $T$ est $y=k'(\e)(x-\e)+k(\e)$.
    Par conséquent $k'(\e)=\dfrac{3-\e}{\e}$ et $k(\e)=3-\e$.
    Une équation de $T$ est donc $y=\dfrac{3-\e}{\e}(x-\e)+3-\e$
    Soit $y=\dfrac{3-\e}{\e}x$
    Réponse b
    $\quad$
  5. $\left(\ln(x)\right)^2+10\ln(x)+21=0 \ssi \begin{cases} X^2+10X+21=0 \\X=\ln(x)\end{cases}$
    Le discriminant de l’équation $X^2+10X+21=0$ est $\Delta=16$.
    Elle possède donc deux solutions $\dfrac{-10-\sqrt{16}}{2}=-7$ et $\dfrac{-10+\sqrt{16}}{2}=-3$.
    $\ln(x)=-7 \ssi x=\e^{-7}$
    $\ln(x)=-3\ssi x=\e^{-3}$.
    Par conséquent $\e^{-7}$ et $\e^{-3}$ sont les solutions de l’équation $\left(\ln(x)\right)^2+10\ln(x)+21=0$.
    Réponse c
    $\quad$

 

Énoncé

Télécharger (PDF, 2.98Mo)

Si l’énoncé ne s’affiche pas directement rafraîchissez l’affichage.